119
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Effects of Qi Teng Xiao Zhuo granules on circRNA expression profiles in rats with chronic glomerulonephritis

, , , , , , & show all
Pages 1901-1913 | Published online: 04 Jun 2019

References

  • Amanuel A, Kalkidan H, Cristiana A, et al. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England). 2017;390(10100):1084–1150. doi:10.1016/S0140-6736(17)31833-0
  • Velciov S, Gluhovschi G, Timar R, et al. Urinary enzymatic markers (N-acetyl-beta-D-glucosaminidase) in assessing the tubulointerstitial compartment in chronic glomerulonephritis related to odontogenic foci. Wien Klin Wochenschr. 2016;128(3–4):102–108. doi:10.1007/s00508-015-0841-426377174
  • Gao JR, Qin XJ, Jiang H, Wang T, Song JM, Xu SZ. The effects of Qi Teng Xiao Zhuo granules, traditional Chinese medicine, on the expression of genes in chronic glomerulonephritis rats. J Ethnopharmacol. 2016;193:140–149. doi:10.1016/j.jep.2016.08.01127497640
  • Qiu H, Fan W, Fu P, et al. General acteoside of Rehmanniae leaves in the treatment of primary chronic glomerulonephritis: a randomized controlled trial. Afr J Tradit Complement Altern Med. 2013;10(4):109–115.24146510
  • Cybulsky AV, Walsh M, Knoll G, et al. Canadian Society of Nephrology Commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis: management of glomerulonephritis in adults. Am J Kidney Dis. 2014;63(3):363–377. doi:10.1053/j.ajkd.2013.12.00124423780
  • Kou J, Wu J, Yang HT, et al. Efficacy and safety of Shenyankangfu tablets for primary glomerulonephritis: study protocol for a randomized controlled trial. Trials. 2014;15:479. doi:10.1186/1745-6215-15-47925480673
  • Lv F, Wang YP, Wang D. Experience of syndrome differentiation and treatment on CGN by Cao En-ze. J Anhui TCM Coll. 2010;29(03):30–32.
  • Lv F, Zhang J. Study on the inheritance and development of Xin‘an medicine from diagnosis and treatment of CGN experience by Cao En-ze. Cjgmcm. 2010;25(11):1974–1975.
  • Wang JF. Experience of Cao En-ze in the treatment of chronic nephritis. J Chin Med Clin. 2017;29(08):1236–1238.
  • Gu GG. Sheng Nong Ben Cao Jing. Peking: People’s Medical Press; 1955:8.
  • Li SZ. Ben Cao Gang Mu Essentials. Guangzhou: Guangdong Science and Technology Press 1988;267.
  • Zhang ZJ. Jin Kui Yao Lue. Vol. 15 Peking: TCM Ancient Books Press 1997;15,24.
  • Liu JS, Fang Q, Hu SJ, et al. Clinical study of shenkang granule in the treatment of chronic glomerulonephritis. Liaoning j tradit Chin Med. 2007;34(02):171–172.
  • Mao YP, Wang YP, Cao EZ, et al. Shenkang infusion treat latent nephritis of deficient spleen and kidney. J Zhejiang Univ Chin Med. 2010;34(03):335–336.
  • Cao EZ, Dai XH, Fang Q, et al. Clinical reseach of Shenkang Granule in the treatment of chronic glomerulonephritis. Anhui clin J Tradit Chin Med. 1999;11(02):73–75.
  • Hu SJ, Cao EZ, Wang YP, et al. Clinical study on the therapeutic effect of shenkang granule on chronic glomerulonephritis. J Chin Med Clin. 2008;20(02):140–141.
  • Ren KJ, Wang YP, Hu SJ, et al. Effects of Shen Kang Granule on serum high sensitivity C- reactive protein and coagulation function in patients with chronic glomerulonephritis and spleen kidney deficiency syndrome. J Anhui TCM Coll. 2017;36(04):16–19.
  • Wei LB, Gao JR, Shan L, et al. Effect of Qi Teng Xiao Zhuo Granule on the treatment and pathological morphology of adriamycin chronic glomerulonephritis in rats. Pharmacol Clin Chin Med. 2016;32(01):149–151.
  • Gao JR, Wu X, Song JM, et al. Regulation of Qi Teng Xiao Zhuo Granule on Syk/Ras/c-Fos signaling pathway in rats with chronic glomerulonephritis. Pharmacol Clin Chin Med. 2017;33(05):143–149.
  • Gao JR, Zhou CD. Orthogonal experiment on extraction process of Shenkang granule. J Anhui TCM Coll. 2004;23(05):44–46.
  • Wei LB, Wu X, Wang XY, et al. Study on quality control of Shenkang granule. Chin J Inf TCM. 2010;17(09):50–51.
  • Ge DD, Gao JR, Wu X, et al. Study on improvement of quality standard of Qi Teng Xiao Zhuo Granule. Clin J Tradit Chin Med. 2017;29(05):650–655.
  • Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2017;75:1071–1098.29116363
  • Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY). 2013;19(2):141–157. doi:10.1261/rna.035667.112
  • Ma HB, Yao YN, Yu JJ, Chen XX, Li HF. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res. 2018;10(2):592–604.29511454
  • Luan J, Jiao C, Kong W, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids. 2018;10:245–253. doi:10.1016/j.omtn.2017.12.00629499937
  • Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12. doi:10.1016/j.canlet.2016.12.03628089832
  • Yan L, Feng J, Cheng F, et al. Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem Biophys Res Commun. 2018;498(4):743–750. doi:10.1016/j.bbrc.2018.03.05129526755
  • Lang BJ, Holton KM, Gong J, Calderwood SK. A workflow guide to RNA-seq analysis of chaperone function and beyond. Methods Mol Biol (Clifton, NJ). 2018;1709:233–252.
  • Hallas JM, Chichvarkhin A, Gosliner TM. Aligning evidence: concerns regarding multiple sequence alignments in estimating the phylogeny of the Nudibranchia suborder Doridina. Royal Society Open Science. 2017;4(10):171095.
  • Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16(1):4. doi:10.1186/s13059-015-0667-425583365
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi:10.1093/bioinformatics/btp61619910308
  • Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–282. doi:10.1038/nrg316222411466
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.123930314597658
  • Qu Z, Cui J, Harata-Lee Y, et al. Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics. Oncotarget. 2016;7(40):66003–66019. doi:10.18632/oncotarget.1178827602759
  • Cheng X, Joe B. Circular RNAs in rat models of cardiovascular and renal diseases. Physiol Genomics. 2017;49(9):484–490. doi:10.1152/physiolgenomics.00064.201728778982
  • Gao JR, Qin XJ, Jiang H, Wang T, Song JM, Xu SZ. Screening and functional analysis of DE genes in chronic glomerulonephritis by whole genome microarray. Gene. 2016;589(1):72–80. doi:10.1016/j.gene.2016.05.03127222482
  • Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018. doi:10.1016/j.pharmthera.2018.01.010
  • Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol. 2018;1–8. doi:10.1080/15476286.2018.1435248
  • Yang L, Han B, Zhang Y, et al. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy. 2017;1–70. doi:10.1080/15548627.2017.1332566
  • Jin L, Li Y, Liu J, et al. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Mol Med Rep. 2016;13(6):5386–5392. doi:10.3892/mmr.2016.520527121091
  • Zhang Y, Xiao HQ, Wang Y, Yang ZS, Dai LJ, Xu YC. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice. Exp Ther Med. 2015;10(1):106–112. doi:10.3892/etm.2015.246826170919
  • Fay MJ, Alt LAC, Ryba D, et al. Cadmium nephrotoxicity is associated with altered MicroRNA expression in the rat renal cortex. Toxics. 2018;6(1):16. doi:10.3390/toxics6010016
  • Wang S, Wu L, Du L, Lu H, Chen B, Bai Y. Reduction in miRNA-125b-5p levels is associated with obstructive renal injury. Biomedical Rep. 2017;6(4):449–454. doi:10.3892/br.2017.875
  • Wang Y, Zhang R, Zhang J, Liu F. MicroRNA-326-3p ameliorates high glucose and ox-LDL-IC- induced fibrotic injury in renal mesangial cells by targeting FcgammaRIII. Nephrology (Carlton, Vic). 2017;23:1031–1038.
  • VHasegawa S, Nakano T, Torisu K, et al. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab Invest. 2017;97(12):1439–1452. doi:10.1038/labinvest.2017.7729083411
  • Wang B, Ding W, Zhang M, Li H, Gu Y. Rapamycin attenuates aldosterone-induced tubulointerstitial inflammation and fibrosis. Cell Physiol Biochem. 2015;35(1):116–125. doi:10.1159/00036968025547416
  • Yu W, Li Y, Wang Z, et al. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing. Int J Mol Med. 2016;38(3):894–902. doi:10.3892/ijmm.2016.267727432315
  • Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. Prog Mol Biol Transl Sci. 2018;153:181–207. doi:10.1016/bs.pmbts.2017.11.01929389516
  • Ji M, Lu Y, Zhao C, et al. C5a induces the synthesis of IL-6 and TNF-alpha in rat glomerular mesangial cells through MAPK signaling pathways. PLoS One. 2016;11(9):e0161867. doi:10.1371/journal.pone.016186727583546