86
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Genetic variations in the transcription factors GATA4 and GATA6 and bleeding complications in patients receiving warfarin therapy

, , , , &
Pages 1717-1727 | Published online: 17 May 2019

References

  • Roden DM, Johnson JA, Kimmel SE, et al. Cardiovascular pharmacogenomics. Circ Res. 2011;109:807–820. doi:10.1161/CIRCRESAHA.110.23099521921273
  • Nishimura RA, Otto CM, Bonow RO, et al. AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the american college of Cardiology/American heart association task force on practice guidelines. Circulation. 2014;129:2440–2492. doi:10.1161/CIR.000000000000002924589852
  • Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G; American College of Chest Physicians. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:160S–98S. doi:10.1378/chest.08-067018574265
  • Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med. 2007;167:1414–1419. doi:10.1001/archinte.167.13.141417620536
  • Pourgholi L, Goodarzynejad H, Mandegary A, et al. Gene polymorphisms and the risk of warfarin-induced bleeding complications at therapeutic international normalized ratio (INR). Toxicol Appl Pharmacol. 2016;309:37–43. doi:10.1016/j.taap.2016.08.02627581200
  • Marie I, Leprince P, Menard JF, Tharasse C, Levesque H. Risk factors of vitamin K antagonist overcoagulation. Qjm. 2012;105:53–62. doi:10.1093/qjmed/hcr13621880698
  • Weiss MJ, Orkin SH. GATA transcription factors: key regulators of hematopoiesis. Exp Hematol. 1995;23:99–107.7828675
  • Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 2000;275:38949–38952. doi:10.1074/jbc.R00002920011042222
  • Charron F, Paradis P, Bronchain O, Nemer G, Nemer M. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol. 1999;19:4355–4365.10330176
  • Xin M, Davis CA, Molkentin JD, et al. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A. 2006;103:11189–11194. doi:10.1073/pnas.060460410316847256
  • Yang F, Wu M, Li Y, et al. Mutation p.S335X in GATA4 reduces its DNA binding affinity and enhances cell apoptosis associated with ventricular septal defect. Curr Mol Med. 2013;13:993–999.23745586
  • Krachulec J, Vetter M, Schrade A, et al. GATA4 is a critical regulator of gonadectomy-induced adrenocortical tumorigenesis in mice. Endocrinology. 2012;153:2599–2611. doi:10.1210/en.2011-213522461617
  • Xu YJ, Di RM, Qiao Q, et al. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene. 2018;663:115–120. doi:10.1016/j.gene.2018.04.01829653232
  • Bashawri LA, Ahmed MA. The approach to a patient with a bleeding disorder: for the primary care physician. J Family Community Med. 2007;14:53–58.23012146
  • Uranishi R, Baev NI, Kim JH, Awad IA. Vascular smooth muscle cell differentiation in human cerebral vascular malformations. Neurosurgery. 2001;49:671–679.11523679
  • Bauditz J, Lochs H. Angiogenesis and vascular malformations: antiangiogenic drugs for treatment of gastrointestinal bleeding. World J Gastroenterol. 2007;13:5979–5984.18023086
  • Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–371. doi:10.1016/j.preteyeres.2008.05.00118653375
  • Lockwood CJ. Mechanisms of normal and abnormal endometrial bleeding. Menopause. 2011;18:408–411. doi:10.1097/GME.0b013e31820bf28821499503
  • Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015;569:1–6. doi:10.1016/j.gene.2015.06.02926074089
  • Casco VH, Veinot JP, Kuroski de Bold ML, Rg M, Mm S, de Bold AJ. Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem. 2002;50:799–809. doi:10.1177/00221554020500060612019296
  • Rubattu S, Sciarretta S, Valenti V, Stanzione R, Volpe M. Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens. 2008;21:733–741. doi:10.1038/ajh.2008.17418464748
  • Mehran R, Rao SV, Bhatt DL, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation. 2011;123:2736–2747. doi:10.1161/CIRCULATIONAHA.110.00944921670242
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–417. doi:10.1038/clpt.2012.9622992668
  • Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016;44:D877–D881. doi:10.1093/nar/gkv134026657631
  • Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–311.11125122
  • van Schie RM, Wessels JA, Verhoef TI, et al. Evaluation of the effect of genetic variations in GATA-4 on the phenprocoumon and acenocoumarol maintenance dose. Pharmacogenomics. 2012;13:1917–1923. doi:10.2217/pgs.12.17423215884
  • Whitlock RP, Sun JC, Fremes SE, Rubens FD, Teoh KH. Antithrombotic and thrombolytic therapy for valvular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e576S–600S. doi:10.1378/chest.11-230522315272
  • Zhou XM, Zhuang W, Hu JG, Li JM, Yu JF, Jiang L. Low-dose anticoagulation in Chinese patients with mechanical heart valves. Asian Cardiovasc Thorac Ann. 2005;13:341–344. doi:10.1177/02184923050130041016304222
  • Matsuyama K, Matsumoto M, Sugita T, et al. Anticoagulant therapy in Japanese patients with mechanical mitral valves. Circ J. 2002;66:668–670.12135136
  • Yoon IK, Lee KE, Lee JK, Chang BC, Gwak HS. Adequate intensity of warfarin therapy for Korean patients with mechanical cardiac valves. J Heart Valve Dis. 2013;22:102–109.23610997
  • Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE. Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res. 1997;35:158–167.9302360
  • Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol. 2012;166:522–531. doi:10.1111/j.1476-5381.2012.01827.x22220582
  • Ulker S, Akgür S, Evinç A, Soykan N, Koşay S. Platelet aggregation and atrial natriuretic peptide. Gen Pharmacol. 1995;26:1409–1412.7590139
  • Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J. Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab. 2008;19:130–137. doi:10.1016/j.tem.2007.11.00618337116
  • Carnevale R, Pignatelli P, Frati G, et al. C2238 ANP gene variant promotes increased platelet aggregation through the activation of Nox2 and the reduction of cAMP. Sci Rep. 2017;7:3797. doi:10.1038/s41598-017-03679-928630469
  • Heineke J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 2007;117:3198–3210. doi:10.1172/JCI3257317975667
  • Reamon-Buettner SM, Cho SH, Borlak J. Mutations in the 3′-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Med Genet. 2007;8:38. doi:10.1038/jhg.2010.8417592645
  • Azakie A, Fineman JR, He Y. Myocardial transcription factors are modulated during pathologic cardiac hypertrophy in vivo. J Thorac Cardiovasc Surg. 2006;132:1262–1271. doi:10.1016/j.jtcvs.2006.08.00517140938
  • Kiefer F, Witt SH, Frank J, et al. Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenomics J. 2011;11:368–374. doi:10.1038/tpj.2010.5120585342
  • Yin F, Herring BP. GATA-6 can act as a positive or negative regulator of smooth muscle-specific gene expression. J Biol Chem. 2005;280:4745–4752. doi:10.1074/jbc.M41158520015550397
  • Mano T, Luo Z, Malendowicz SL, Evans T, Walsh K. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circ Res. 1999;84:647–654.10189352
  • Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H. GATA transcription factors in the developing and adult heart. Cardiovasc Res. 2004;63:196–207. doi:10.1016/j.cardiores.2004.03.02515249177
  • Li J, Liu W, Yang Z, Yang Y. Novel GATA6 loss-of-function mutation responsible for familial atrial fibrillation. Int J Mol Med. 2012;30:783–790. doi:10.3892/ijmm.2012.106822824924
  • Lin X, Huo Z, Liu X, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55:662–667. doi:10.1038/jhg.2010.8420631719
  • Zheng GF, Wei D, Zhao H, Zhou N, Yang YQ, Liu XY. A novel GATA6 mutation associated with congenital ventricular septal defect. Int J Mol Med. 2012;29:1065–1071. doi:10.3892/ijmm.2012.93022407241
  • Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–1072.9136933
  • Gharibeh L, Komati H, Bossé Y, et al. GATA6 regulates aortic valve remodeling, and its haploinsufficiency leads to right-left type bicuspid aortic valve circulation. Circulation. 2018;138:1025–1038. doi:10.1161/CIRCULATIONAHA.117.02950629567669
  • Mwinyi J, Nekvindová J, Cavaco I, et al. New insights into the regulation of CYP2C9 gene expression: the role of the transcription factor GATA-4. Drug Metab Dispos. 2010;38:415–421. doi:10.1124/dmd.109.02940519995889