317
Views
28
CrossRef citations to date
0
Altmetric
Review

Combination of drugs and carriers in drug delivery technology and its development

&
Pages 1401-1408 | Published online: 30 Apr 2019

References

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176–185. doi:10.1016/j.jconrel.2016.07.05127480450
  • Tzounakas VL, Karadimas DG, Papassideri IS, Seghatchian J, Antonelou MH. Erythrocyte-based drug delivery in transfusion medicine: wandering questions seeking answers. Transfus Apher Sci. 2017;56(4):626–634. doi:10.1016/j.transci.2017.07.01528774826
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applicationsand hazards. Int J Nanomedicine. 2008;3(2):133–149.18686775
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037.23238461
  • Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29:323–332. doi:10.1016/j.tibtech.2011.03.00121489647
  • Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol. 2014;28:69–74. doi:10.1016/j.copbio.2013.11.01424832077
  • Liu G, Luo Q, Gao H, et al. Cell membrane-inspired polymeric micelles as carriers for drug delivery. Biomater Sci. 2015;3(3):490–499. doi:10.1039/c4bm00385c26222292
  • Saxena V, Diaz A, Clearfield A, Batteas JD, Hussain MD. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer. Nanoscale. 2013;5(6):2328–2336. doi:10.1039/c3nr34242e23392208
  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014;2014:180549. doi:10.1155/2014/18054924772414
  • Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92. doi:10.1016/j.jconrel.2015.10.04926518723
  • Li J, Ai Y, Wang L, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials. 2016;76:52–65. doi:10.1016/j.biomaterials.2015.10.04626519648
  • Ai J, Biazar E, Montazeri M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine. 2011;6:1117–1127. doi:10.2147/IJN.S1660321698080
  • Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther. 2016;9:2873–2884. doi:10.2147/OTT.S10469127274282
  • Varan G, Benito JM, Mellet CO, Bilensoy E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J Nanotechnol. 2017;8:1457–1468. doi:10.3762/bjnano.8.14528900599
  • Rong X, Guodong Z, Junhua M, et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016;34(4):414–418. doi:10.1038/nbt.350626974511
  • Junfeng B, Yan Z, Xin H, et al. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int J Nanomedicine. 2017;12:1329–1339. doi:10.2147/IJN.S12619928243093
  • Garrido C, Simpson CA, Dahl NP, et al. Gold nanoparticles to improve HIV drug delivery. Future Med Chem. 2015;7(9):1097–1107. doi:10.4155/fmc.15.5726132521
  • Rodriguez MA, Pytlik R, Kozak T, et al. Vincristine sulfate liposomes injection (Marqibo) in heavily pre-treated patients with refractory aggressive non-Hodgkin lymphoma. report of the pivotal phase. 2 study. Cancer. 2009;115(15):3475–3482. doi:10.1002/cncr.2435919536896
  • Fassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma. 2005;46(6):795–802. doi:10.1080/1042819040001162516019523
  • Hu CM, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv Healthc Mater. 2012;1(5):537–547. doi:10.1002/adhm.20120013823184788
  • Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv. 2014;11(5):677–687. doi:10.1517/17425247.2014.88967924547792
  • Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano. 2014;8:10414–10425.25286086
  • Sun Y, Su J, Liu G, et al. Advances of blood cell-based drug delivery systems. Eur J Pharm Sci. 2017;96:115–128. doi:10.1016/j.ejps.2016.07.02127496050
  • Luk BT, Fang RH, Che-Ming J, et al. Safe and immunocompatible nanocarriers cloaked in rbc membranes for drug delivery to treat solid tumors. Theranostics. 2016;6(7):1004–1011. doi:10.7150/thno.1447127217833
  • Favretto ME, Cluitmans JCA, Bosman GJCGM,Brock R. Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release. 2013;170(3):343–351. doi:10.1016/j.jconrel.2013.05.03223747798
  • Bossa F, Latiano A, Rossi L, et al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am J Gastroenterol. 2008;103:2509–2516. doi:10.1111/j.1572-0241.2008.02103.x18721243
  • Gupta N, Patel B, Ahsan F, et al. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res. 2014;31(6):1553–1565.24449438
  • Kwon YM, Chung HS, Moon C, et al. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia. J Control Release. 2009;139(3):182–189. doi:10.1016/j.jconrel.2009.06.02719577600
  • Harisa GE, Ibrahim MF, Alanazi FK, et al. Characterization of human erythrocytes as potential carrier for pravastatin: an in vitro study. Int J Med Sci. 2011;8(3):222–230. doi:10.7150/ijms.8.22221448309
  • Erpenbeck L, Schon MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–3436. doi:10.1182/blood-2009-10-24729620194899
  • Sarkar S, Alam MA, Shaw J, Dasgupta AK. Drug delivery using platelet cancer cell interaction. Pharm Res. 2013;30(11):2785–2794. doi:10.1007/s11095-013-1097-123739991
  • Lu D, Ning G, Baoan C, et al. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants. Oncotarget. 2016;7(16):21076–21090.27049725
  • Peipei X, Huaqin Z, Bing C, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep. 2017;7:42632. doi:10.1038/srep4263228198453
  • Shi Q, Fahs SA, Wilcox DA, et al. Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia A mice with preexisting FVIII immunity. Blood. 2008;112(7):2713–2721. doi:10.1182/blood-2008-03-14083018495954
  • Shi QZ, Montgomery RR. Platelets as delivery systems for disease treatments. Adv Drug Deliv Rev. 2010;62(12):1196–1203. doi:10.1016/j.addr.2010.06.00720619307
  • Villa CH, Seghatchian J, Muzykantov V. Drug delivery by erythrocytes: “Primum non nocere”. Transfus Apher Sci. 2016;55(3):275–280. doi:10.1016/j.transci.2016.10.01727856317
  • Kalafatovic D, Giralt E. Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules. 2017;22(11). doi:10.3390/molecules22111929
  • Qiang W, Xiang X, Huaping L, Ming Z. Structural characteristics and transmembrane mechanism of transmembrane peptides. Chemistry of Life. 2005;25(4):304–306.
  • Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994. doi:10.1021/nn405726924559246
  • Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295–320. doi:10.1146/annurev-bioeng-071813-10462224905876
  • Antonella B, Anna Lucia T, Maria Lina T, et al. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules. 2018;23(2):295. doi:10.3390/molecules23020295
  • Junfeng S, Yifan M, Jing Z, et al. A review on electroporation-based intracellular delivery. Molecules. 2018;23(11):3044.
  • Spugnini EP, Pizzuto M, Filipponi M, et al. Electroporation enhances bleomycin efficacy in cats with periocular carcinoma and advanced squamous cell carcinoma of the head. J Vet Intern Med. 2015;29(5):1368–1375. doi:10.1111/jvim.1358626192904
  • Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8. doi:10.1016/j.jconrel.2014.03.05424794901
  • Yun YH, Lee BK, Park K. Controlled drug delivery: historical perspective for the next generation. J Control Release. 2015;219:2–7. doi:10.1016/j.jconrel.2015.10.00526456749
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–717. doi:10.1021/jacs.5b0997426741786
  • Yanshu L, Weihong G, Jianxin Z. Research progress of erythrocyte drug carrier. Chin Pharm J. 2004;39(5):324–327.
  • Bowei C, Shurui S, Guoyun W, et al. Preparation of multifunetional nanoscaled red blood cells drug delivery system and its photothermal and photodynanfic effects. Int J Biomed Eng. 2018;41(1):32–37.