338
Views
26
CrossRef citations to date
0
Altmetric
Review

Quizartinib (AC220): a promising option for acute myeloid leukemia

, &
Pages 1117-1125 | Published online: 08 Apr 2019

References

  • Kornblau SM, Womble M, Qiu YH, et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood. 2006;108(7):2358–2365. Epub 2006/06/10. doi:10.1182/blood-2006-02-00347516763210
  • Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–474. Epub 2009/11/03. doi:10.1182/blood-2009-07-23535819880497
  • Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–1152. Epub 2015/09/17. doi:10.1056/NEJMra140618426376137
  • Yang X, Wang J. Precision therapy for acute myeloid leukemia. J Hematol Oncol. 2018;11(1):3 Epub 2018/01/06. doi:10.1186/s13045-017-0543-729301553
  • DiNardo CD, Pratz KW, Letai A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–228. doi:10.1016/S1470-2045(18)30010-X29339097
  • Mei M, Aldoss I, Marcucci G, Pullarkat V. Hypomethylating agents in combination with venetoclax for acute myeloid leukemia: update on clinical trial data and practical considerations for use. Am J Hematol. 2019;94(3):358–362. doi:10.1002/ajh.2536930499168
  • Song Y, Magenau J, Li Y, et al. FLT3 mutational status is an independent risk factor for adverse outcomes after allogeneic transplantation in AML. Bone Marrow Transplant. 2016;51(4):511–520. Epub 2015/ 07/21. doi:10.1038/bmt.2015.17026191952
  • Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. Epub 2016/11/30. doi:10.1182/blood-2016-08-73319627895058
  • Ouchida AT, Li Y, Geng J, et al. Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death Dis. 2018;9(2):138 Epub 2018/01/28. doi:10.1038/s41419-017-0170-929374185
  • Zorn JA, Wang Q, Fujimura E, Barros T, Kuriyan J. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). PLoS One. 2015;10(4):e0121177 Epub 2015/04/04. doi:10.1371/journal.pone.012117725837374
  • Larrue C, Saland E, Boutzen H, et al. Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood. 2016;127(7):882–892. Epub 2015/08/20. doi:10.1182/blood-2015-05-64649726286850
  • Kapoor S, Natarajan K, Baldwin PR, et al. Concurrent inhibition of pim and FLT3 kinases enhances apoptosis of FLT3-ITD acute myeloid leukemia cells through increased Mcl-1 proteasomal degradation. Clin Cancer Res. 2018;24(1):234–247. Epub 2017/ 10/28. doi:10.1158/1078-0432.ccr-17-162929074603
  • Fleischmann M, Schnetzke U, Schrenk KG, et al. Outcome of FLT3-ITD-positive acute myeloid leukemia: impact of allogeneic stem cell transplantation and tyrosine kinase inhibitor treatment. J Cancer Res Clin Oncol. 2017;143(2):337–345. doi:10.1007/s00432-016-2290-527778197
  • Sandmaier BM, Khaled S, Oran B, Gammon G, Trone D, Frankfurt O. Results of a phase 1 study of quizartinib as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic stem cell transplant. Am J Hematol. 2018;93(2):222–231. doi:10.1002/ajh.2495929090473
  • Carow CE, Kim E, Hawkins AL, et al. Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12–>q13. Cytogenet Cell Genet. 1995;70(3–4):255–257. doi:10.1159/0001340467789184
  • Vandergeer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal-transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi:10.1146/annurev.cellbio.10.1.2517888178
  • Rosnet O, Buhring HJ, de Lapeyriere O, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 1996;95(3–4):218–223. doi:10.1159/0002038818677746
  • Wander SA, Levis MJ, Fathi AT. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol. 2014;5(3):65–77. doi:10.1177/204062071453212324883179
  • Small D, Levenstein M, Kim E, et al. Stk-1, the human homolog of Flk-2/Flt-3, is selectively expressed in Cd34(+) human bone-marrow cells and is involved in the proliferation of early progenitor stem-cells. Proc Natl Acad Sci USA. 1994;91(2):459–463. doi:10.1073/pnas.91.2.4597507245
  • Gu JY, Gu X. Natural history and functional divergence of protein tyrosine kinases. Gene. 2003;317(1–2):49–57. doi:10.1016/S0378-1119(03)00696-614604791
  • Levis M, Small D. FLT3: iTDoes matter in leukemia. Leukemia. 2003;17(9):1738–1752. doi:10.1038/sj.leu.240309912970773
  • Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21(16):2555–2563. doi:10.1038/sj/onc/120533211971190
  • Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333–1337. doi:10.1038/sj.leu.24011309737679
  • Griffith J, Black J, Faerman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13(2):169–178. doi:10.1016/S1097-2765(03)00505-714759363
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Gene Dev. 2004;18(16):1926–1945. doi:10.1101/gad.121270415314020
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–344. doi:10.1128/MMBR.68.2.320-344.200415187187
  • Bar-Natan M, Nelson EA, Xiang M, Frank DA. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAKSTAT. 2012;1(2):55–64. doi:10.4161/jkst.2000624058751
  • Hassanein M, Almahayni MH, Ahmed SO, Gaballa S, El Fakih R. FLT3 inhibitors for treating acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(10):543–549. doi:10.1016/j.clml.2016.06.00227450971
  • Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59–66. doi:10.1182/blood.V100.1.5912070009
  • Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia. 2012;26(10):2176–2185. doi:10.1038/leu.2012.11422614177
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089–5102. doi:10.1182/blood-2010-04-26186720705759
  • Stockard B, Guingab J, Garrett T, Pounds S, Rubnitz JE, Lamba J. Global and targeted metabolic profiling identifies metabolic markers for FLT3-ITD in pediatric AML patients. Blood. 2017;130. PubMed PMID:WOS:000432419705282.
  • Small D. FLT3: biology and molecular targeting to improve outcome in AML. Pediatr Blood Cancer. 2017;64:S2–S.
  • Adamia S, Nemeth J, Bhatt S, et al. FLT3 Splice Variant (FLT3Va) as a potential immunotherapeutic target in patients with Acute Myeloid Leukemia (AML). Blood. 2016;128(22). doi:10.1182/blood-2016-06-724161
  • Dany M, Gencer S, Nganga R, et al. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood. 2016;128(15):1944–1958. doi:10.1182/blood-2016-04-70875027540013
  • Kazi JU, Chougule RA, Li TF, et al. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD. Cell Mol Life Sci. 2017;74(14):2679–2688. doi:10.1007/s00018-017-2494-028271164
  • Matthews W, Jordan CT, Gw W, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65(7):1143–1152.1648448
  • Ostronoff F, Estey E. The role of quizartinib in the treatment of acute myeloid leukemia. Expert Opin Investig Drugs. 2013;22(12):1659–1669. doi:10.1517/13543784.2013.842973
  • Grunwald MR, Levis MJ. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol. 2013;97(6):683–694. doi:10.1007/s12185-013-1334-823613268
  • Chao Q, Sprankle KG, Grotzfeld RM, et al. Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N ‘-{4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea Dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-Like Tyrosine Kinase-3 (FLT3) inhibitor. J Med Chem. 2009;52(23):7808–7816. doi:10.1021/jm900753319754199
  • Hills RK, Gammon G, Trone D, Burnett AK. Quizartinib significantly improves overall survival in FLT3-ITD positive AML patients relapsed after stem cell transplantation or after failure of salvage chemotherapy: a comparison with historical AML database (UK NCRI data). Blood. 2015;126(23). PubMed PMID: WOS:000368020102069.
  • Papadopoulos KP, Ben-Ami E, Patnaik A, Trone D, Li JK, Demetri GD. Safety and tolerability of quizartinib, a FLT3 inhibitor, in advanced solid tumors: a phase 1 dose-escalation trial. BMC Cancer. 2018;18(1):790. doi:10.1186/s12885-018-4242-830081867
  • Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681-+. doi:10.1200/Jco.2013.48.8783
  • Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–2992. doi:10.1182/blood-2009-05-22203419654408
  • Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260–U153. doi:10.1038/nature1101622504184
  • Levis MJ, Cortes JE, Gammon GM, Trone D, Kang DW, Li JK. Laboratory and clinical investigations to identify the optimal dosing strategy for quizartinib (AC220) monotherapy in FLT3-Itd-positive (+) relapsed/refractory (R/R) Acute Myeloid Leukemia (AML). Blood. 2016;128(22). doi:10.1182/blood-2016-06-724161
  • Altman JK, Foran JM, Pratz KW, Trone D, Cortes JE, Tallman MS. Phase 1 study of quizartinib in combination with induction and consolidation chemotherapy in patients with newly diagnosed acute myeloid leukemia. Am J Hematol. 2018;93(2):213–221. doi:10.1002/ajh.2497429139135
  • Swaminathan M, Kantarjian HM, Daver N, et al. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood. 2017;130. PubMed PMID:WOS:000432419401370.
  • Sanga M, James J, Marini J, Gammon G, Hale C, Li JK. An open-label, single-dose, phase 1 study of the absorption, metabolism and excretion of quizartinib, a highly selective and potent FLT3 tyrosine kinase inhibitor, in healthy male subjects, for the treatment of acute myeloid leukemia. Xenobiotica. 2017;47(10):856–869. doi:10.1080/00498254.2016.121710027460866
  • Cortes J, Perl AE, Dohner H, et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19(7):889–903. doi:10.1016/S1470-2045(18)30240-729859851
  • Cortes JE, Tallman MS, Schiller GJ, et al. Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood. 2018;132(6):598–607. doi:10.1182/blood-2018-01-82162929875101
  • Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–464. doi:10.1056/NEJMoa161435928644114
  • Martin MT, Jeschke G, Perl AE, Carroll M, Figueroa ME. Differentiation response to quizartinib, a potent 2nd generation FLT3 inhibitor, in relapsed FLT3-mutant AML patients correlates with specific DNA methylation signature prior to therapy. Blood. 2017;130. PubMed PMID:WOS:000432419401370.
  • Khaled S, Ganguly S, Perl AE, et al. Concordance between bone marrow and peripheral blood samples for assessment of FLT3 Internal Tandem Duplication (ITD) mutations: data from patients screened for participation in quantum-R, a global, randomized, open-label, phase 3 study examining the effect of quizartinib monotherapy vs salvage chemotherapy on overall survival in patients with FLT3 – ITD – mutated AML who are refractory to or have relapsed after first-line therapy. Blood. 2017;130. PubMed PMID:WOS:000432419403248.
  • Schlenk R, Dombret H, Amadori S, et al. QuANTUM-first: phase 3, double-blind, placebo-controlled study of quizartinib in combination with induction and consolidation chemotherapy, and as maintenance therapy in patients (pts) with newly diagnosed (NDx) FLT3-ITD acute myeloid leukemia (AML). Ann Oncol. 2017;28. doi:10.1093/annonc/mdx075
  • Smith CC, Paguirigan A, Jeschke GR, et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood. 2017;130(1):48–58. doi:10.1182/blood-2016-04-71182028490572
  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60. doi:10.1182/blood-2004-03-089115345597
  • Hirade T, Abe M, Onishi C, Taketani T, Yamaguchi S, Fukuda S. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by up-regulating RUNX1 expression in hematopoietic cells. Int J Hematol. 2016;103(1):95–106. doi:10.1007/s12185-015-1908-826590920
  • Hou PP, Wu C, Wang YC, et al. A genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220. Cancer Res. 2017;77(16):4402–4413. doi:10.1158/0008-5472.Can-16-162728625976
  • Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, English I, et al. FGF2 from marrow microenvironment promotes resistance to FLT3 inhibitors in acute myeloid leukemia. Cancer Res. 2016;76(22):6471–6482. doi:10.1158/0008-5472.Can-15-356927671675
  • Abe M, Pelus LM, Singh P, et al. Internal tandem duplication in FLT3 attenuates proliferation and regulates resistance to the FLT3 inhibitor AC220 by modulating p21Cdkn1a and Pbx1 in hematopoietic cells. PLoS One. 2016;11(7):e0158290. doi:10.1371/journal.pone.015829027387666
  • Friedman R. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Proteins. 2017;85(11):2143–2152. doi:10.1002/prot.2536828799176
  • Verma S, Singh A, Kumari A, et al. Insight into the inhibitor discrimination by FLT3 F691L. Chem Biol Drug Des. 2018;91(5):1056–1064. doi:10.1111/cbdd.1316929336115
  • Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 2014;10(9):1571–1579. doi:10.2217/Fon.14.10525145428
  • Suarasan S, Simon T, Boca S, Tomuleasa C, Astilean S. Gelatin-coated gold nanoparticles as carriers of FLT3 inhibitors for acute myeloid leukemia treatment. Chem Biol Drug Des. 2016;87(6):927–935. doi:10.1111/cbdd.1272526808072
  • Li GX, Wang L, Yaghmour B, Ramsingh G, Yaghmour G. The role of FLT3 inhibitors as maintenance therapy following hematopoietic stem cell transplant. Leuk Res Rep. 2018;10:26–36. doi:10.1016/j.lrr.2018.06.00330112274
  • Cortes J Quizartinib significantly prolongs overall survival in pa‐ tients with FLT3‐internal tandem duplication–mutated (mut) re‐ lapsed/refractory aml in the phase 3, randomized, controlled quantum‐r trial. EHA Learning Center. Abstract LB2600; 2018 Available from: . Accessed 6, 2018.