119
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Andrographolide attenuates bupivacaine-induced cytotoxicity in SH-SY5Y cells through preserving Akt/mTOR activity

, &
Pages 1659-1666 | Published online: 16 May 2019

References

  • Zhang K, Yang S, Luo C. TNF-alpha and TNF-R1 regulate bupivacaine-induced apoptosis in spinal cord dorsal root ganglion neuron. Eur J Pharmacol. 2018;833:63–68. doi:10.1016/j.ejphar.2018.05.03429802833
  • Davidson AJ. Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Paediatr Anaesth. 2011;21(7):716–721. doi:10.1111/j.1460-9592.2010.03506.x21466608
  • Li YJ, Zhao W, Yu XJ, et al. Activation of p47phox as a mechanism of bupivacaine-induced burst production of reactive oxygen species and neural toxicity. Oxid Med Cell Longev. 2017;2017:8539026. doi:10.1155/2017/853902628751934
  • Takenami T, Wang G, Nara Y, et al. Intrathecally administered ropivacaine is less neurotoxic than procaine, bupivacaine, and levobupivacaine in a rat spinal model. Can J Anaesth. 2012;59(5):456–465. doi:10.1007/s12630-012-9685-922383086
  • Sen O, Sayilgan NC, Tutuncu AC, et al. Evaluation of sciatic nerve damage following intraneural injection of bupivacaine, levobupivacaine and lidocaine in rats. Braz J Anesthesiol. 2016;66(3):272–275. doi:10.1016/j.bjane.2014.09.01227108824
  • Lu J, Xu SY, Zhang QG, Xu R, Lei HY. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways. Eur J Pharmacol. 2011;657(1–3):51–58. doi:10.1016/j.ejphar.2011.01.05521315711
  • Tao L, Zhang L, Gao R, et al. Andrographolide alleviates acute brain injury in a rat model of traumatic brain injury: possible involvement of inflammatory signaling. Front Neurosci. 2018;12:657. doi:10.3389/fnins.2018.0004430294256
  • Peng Y, Wang Y, Tang N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res. 2018;37(1):248. doi:10.1186/s13046-018-0926-930314513
  • Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol. 2002;135(2):399–406. doi:10.1038/sj.bjp.070449311815375
  • Xia YF, Ye BQ, Li YD, et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol. 2004;173(6):4207–4217.15356172
  • Wang D, Guo H, Chang J, et al. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front Microbiol. 2018;9:2407. doi:10.3389/fmicb.2018.0240730349523
  • Li B, Jiang T, Liu H, et al. Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-Are signaling pathway. J Cell Physiol. 2018;234(1):561–571. doi:10.1002/jcp.2676930071128
  • Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC. Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast. 2015;2015:935403. doi:10.1155/2015/93540326798521
  • Liang Y, Li M, Lu T, Peng W, Wu JH. Andrographolide promotes neural differentiation of rat adipose tissue-derived stromal cells through Wnt/beta-catenin signaling pathway. Biomed Res Int. 2017;2017:4210867. doi:10.1155/2017/421086729085837
  • Zhang Z, Lai D, Wang L, et al. Neuroprotective effects of the andrographolide analogue AL-1 in the MPP(+)/MPTP-induced Parkinson‘s disease model in vitro and in mice. Pharmacol Biochem Behav. 2014;122:191–202. doi:10.1016/j.pbb.2014.03.02824726706
  • Wang X, Zhang X, Cheng Y, et al. Alpha-lipoic acid prevents bupivacaine-induced neuron injury in vitro through a PI3K/Akt-dependent mechanism. Neurotoxicology. 2010;31(1):101–112. doi:10.1016/j.neuro.2009.10.01019879292
  • Fan YL, Li HC, Zhao W, et al. Curcumin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells via activation of the Akt signaling pathway. Neurochem Res. 2016;41(9):2425–2432. doi:10.1007/s11064-016-1955-427233246
  • Wang LY, Li X, Han YZ. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells. Int J Clin Exp Med. 2015;8(9):15065–15075.26628990
  • Bastola T, An RB, Kim YC, Kim J, Seo J. Cearoin induces autophagy, ERK activation and apoptosis via ROS generation in SH-SY5Y neuroblastoma cells. Molecules. 2017;22(2). doi:10.3390/molecules22020242
  • Waly M, Power-Charnitsky VA, Hodgson N, et al. Alternatively spliced methionine synthase in SH-SY5Y neuroblastoma cells: cobalamin and GSH dependence and inhibitory effects of neurotoxic metals and thimerosal. Oxid Med Cell Longev. 2016;2016:6143753. doi:10.1155/2016/614375326989453
  • Chen L, Li Q, Wang H, et al. Paeoniflorin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells via suppression of the p38 MAPK pathway. J Cell Biochem. 2018;120:7015–7023.
  • Cao P, Liu B, Du F, et al. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac Cancer. 2019;10(3):492–500. doi:10.1111/1759-7714.1296230666790
  • Liang Y, Ji J, Lin Y, He Y, Liu J. The ganglioside GM-1 inhibits bupivacaine-induced neurotoxicity in mouse neuroblastoma Neuro2a cells. Cell Biochem Funct. 2016;34(6):455–462. doi:10.1002/cbf.320827558076
  • Wen X, Zhong J, Zhang T, et al. Role of calmodulin-dependent protein kinase II in bupivacaine hydrochloride-induced injury of SH-SY5Y cells. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(8):1133–1136.26277509
  • Li L, Zhang QG, Lai LY, et al. Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxid Med Cell Longev. 2013;2013:159864. doi:10.1155/2013/15986424228138
  • Harato M, Huang L, Kondo F, et al. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells. BMC Neurosci. 2012;13:149. doi:10.1186/1471-2202-13-14923227925
  • Fiskum G. Mechanisms of neuronal death and neuroprotection. J Neurosurg Anesthesiol. 2004;16(1):108–110.14676583
  • Park J, Lee J, Yeom Z, Heo D, Lim YH. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep. 2017;7(1):14520. doi:10.1038/s41598-017-15163-529109537
  • Park CJ, Park SA, Yoon TG, et al. Bupivacaine induces apoptosis via ROS in the Schwann cell line. J Dent Res. 2005;84(9):852–857. doi:10.1177/15440591050840091416109997
  • Lu J, Xu SY, Zhang QG, Lei HY. Bupivacaine induces reactive oxygen species production via activation of the AMP-activated protein kinase-dependent pathway. Pharmacology. 2011;87(3–4):121–129. doi:10.1159/00032340221304223
  • Wu T, Peng Y, Yan S, et al. Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation. 2018;41(5):1681–1689. doi:10.1007/s10753-018-0812-929948505
  • Lin HC, Su SL, Lu CY, et al. Andrographolide inhibits hypoxia-induced HIF-1alpha-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells. Environ Toxicol. 2017;32(3):918–930. doi:10.1002/tox.2229327297870
  • Sun L, Dong Y, Zhao J, Yin Y, Zheng Y. The CLC-2 chloride channel modulates ECM synthesis, differentiation, and migration of human conjunctival fibroblasts via the PI3K/Akt signaling pathway. Int J Mol Sci. 2016;17:6. doi:10.3390/ijms17060910
  • Zhao W, Liu Z, Yu X, et al. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways. Proteomics. 2016;16(4):564–575. doi:10.1002/pmic.20150020226621341
  • Chen JH, Hsiao G, Lee AR, Wu CC, Yen MH. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem Pharmacol. 2004;67(7):1337–1345. doi:10.1016/j.bcp.2003.12.01515013849