144
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Solutol®HS15+pluronicF127 and Solutol®HS15+pluronicL61 mixed micelle systems for oral delivery of genistein

, , , , &
Pages 1947-1956 | Published online: 07 Jun 2019

References

  • Nabavi SF, Daglia M, Tundis R, et al. Genistein: A boon for mitigating ischemic stroke. Curr Top Med Chem. 2015;15:1714–1721.25915610
  • Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother. 2015;76:30–38. doi:10.1016/j.biopha.2015.10.02626653547
  • Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013;4:200–212. doi:10.1039/c2fo30199g23160185
  • Spagnuolo C, Russo GL, Orhan IE, et al. Genistein and cancer: current status, challenges, and future directions. Adv Nutr. 2015;6:408–419. doi:10.3945/an.114.00805226178025
  • Mukund V, Mukund D, Sharma V, Mannarapu M, Alam A. Genistein: its role in metabolic diseases and cancer. Crit Rev Oncol Hematol. 2017;119:13–22. doi:10.1016/j.critrevonc.2017.09.00429065980
  • Yousefi H, Karimi P, Alihemmati A, Alipour MR, Habibi P, Ahmadiasl N. Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: the regulation of MAPK pathway and apoptosis. Iran J Basic Med Sci. 2017;20:1009–1015. doi:10.22038/IJBMS.2017.926929085595
  • van Duursen MB, Nijmeijer SM, de Morree ES, de Jong PC, van den Berg M. Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology. 2011;289:67–73. doi:10.1016/j.tox.2011.07.00521854827
  • Tang J, Xu N, Ji H, Liu H, Wang Z, Wu L. Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. Int J Nanomedicine. 2011;6:2429–2435. doi:10.2147/IJN.S2418522072878
  • Du W, Fan Y, Zheng N, et al. Transferrin receptor specific nanocarriers conjugated with functional 7peptide for oral drug delivery. Biomaterials. 2013;34:794–806. doi:10.1016/j.biomaterials.2012.10.00323103156
  • Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon for oral drug delivery? Drug Discov Today. 2014;19:1530–1546. doi:10.1016/j.drudis.2014.04.01124786464
  • Alqahtani MS, Islam MS, Podaralla S, et al. Food protein based core-shell nanocarriers for oral drug delivery: effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol Pharm. 2017;14:757–769. doi:10.1021/acs.molpharmaceut.6b0101728103046
  • Chen A, Shi Y, Yan Z, et al. Dosage form developments of nanosuspension drug delivery system for oral administration route. Curr Pharm Des. 2015;21:4355–4365.26323418
  • Leonarduzzi G, Testa G, Sottero B, Gamba P, Poli G. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr Med Chem. 2010;17(1):74–95.19941477
  • Wang W, Cui C, Li M, Zhang Z, Lv H. Study of a novel disintegrable oleanolic acid-polyvinylpolypyrrolidone solid dispersion. Drug Dev Ind Pharm. 2017;43:1178–1185. doi:10.1080/03639045.2017.130195028277846
  • Zhang Z, Chen Y, Deng J, Jia X, Zhou J, Lv H. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO(2): preparation, characterization and in vivo studies. Int J Pharm. 2014;465:306–316. doi:10.1016/j.ijpharm.2014.01.02324456672
  • Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33:6758–6768. doi:10.1016/j.biomaterials.2012.05.02622748771
  • Vural I, Sarisozen C, Olmez SS. Chitosan coated furosemide liposomes for improved bioavailability. J Biomed Nanotechnol. 2011;7:426–430.21830483
  • Deng J, Zhang Z, Liu C, Yin L, Zhou J, Lv H. The studies of N-Octyl-N-Arginine-Chitosan coated liposome as an oral delivery system of cyclosporine a. J Pharm Pharmacol. 2015;67:1363–1370. doi:10.1111/jphp.1244826105005
  • Chen H, Wu J, Sun M, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22:100–109. doi:10.3109/08982104.2011.62112722007962
  • Yu F, He C, Waddad AY, et al. N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Drug Dev Ind Pharm. 2014;40:774–782. doi:10.3109/03639045.2013.78672323679668
  • Zhang H, Yang X, Zhao L, Jiao Y, Liu J, Zhai G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv. 2016;23:1933–1939. doi:10.3109/10717544.2015.100870525693642
  • Yang X, Fan R, Wang W, Wang J, Le Y. Design and synthesis of pH-sensitive polymeric micelles for oral delivery of poorly water-soluble drugs. J Biomater Sci Polym Ed. 2016;27:1341–1353. doi:10.1080/09205063.2016.120024827342342
  • Hou J, Sun E, Sun C, et al. Improved oral bioavailability and anticancer efficacy on breast cancer of paclitaxel via Novel Soluplus((R))-Solutol((R)) HS15 binary mixed micelles system. Int J Pharm. 2016;512:186–193. doi:10.1016/j.ijpharm.2016.08.04527567930
  • Li X, Hou X, Ding W, et al. Sirolimus-loaded polymeric micelles with honokiol for oral delivery. J Pharm Pharmacol. 2015;67:1663–1672. doi:10.1111/jphp.1248226454249
  • Kim JH, Baek JS, Park JK, et al. Development of houttuynia cordata extract-loaded solid lipid nanoparticles for oral delivery: high drug loading efficiency and controlled release. Molecules. 2017;22:E221529236057
  • Zhang YL, Zhang ZH, Jiang TY, et al. Cell uptake of paclitaxel solid lipid nanoparticles modified by cell-penetrating peptides in A549 cells. Pharmazie. 2013;68:47–53.23444780
  • Liu Y, Liu J, Liang J, et al. Mucosal transfer of wheat germ agglutinin modified lipid-polymer hybrid nanoparticles for oral delivery of oridonin. Nanomedicine-Uk. 2017;13:2219–2229. doi:10.1016/j.nano.2017.05.003
  • Zhang ZH, Wang XP, Ayman WY, Munyendo WL, Lv HX, Zhou JP. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Drug Deliv. 2013;20:86–93. doi:10.3109/10717544.2013.76678123495734
  • Ma Y, He H, Xia F, et al. In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine-Uk. 2017;13:2643–2654. doi:10.1016/j.nano.2017.07.014
  • Chen G, Jaskula-Sztul R, Harrison A, et al. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy. Biomaterials. 2016;97:22–33. doi:10.1016/j.biomaterials.2016.04.02927156249
  • Lo CL, Huang CK, Lin KM, Hsiue GH. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials. 2007;28:1225–1235. doi:10.1016/j.biomaterials.2006.09.05017097728
  • Messina PV, Besada-Porto JM, Gonzalez-Diaz H, Ruso JM. Self-assembled binary nanoscale systems: multioutput model with LFER-covariance perturbation theory and an experimental-computational study of NaGDC-DDAB micelles. Langmuir. 2015;31:12009–12018. doi:10.1021/acs.langmuir.5b0307426484726
  • Shaji J, Varkey D. Meloxicam-loaded Phospholipid/solutol(R) HS15 based mixed nanomicelles: preparation, characterization, and in vitro antioxidant activity. Pharm Nanotechnol. 2016;4:167–190. doi:10.2174/221173850466616072016232329052497
  • Seo SW, Han HK, Chun MK, Choi HK. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol(R) HS15 as a carrier. Int J Pharm. 2012;424:18–25. doi:10.1016/j.ijpharm.2011.12.05122226878
  • Nguyen-Kim V, Prevost S, Seidel K, et al. Solubilization of active ingredients of different polarity in pluronic(R) micellar solutions - Correlations between solubilizate polarity and solubilization site. J Colloid Interface Sci. 2016;477:94–102. doi:10.1016/j.jcis.2016.05.01727244594
  • Alakhova DY, Kabanov AV. Pluronics and MDR reversal: an update. Mol Pharm. 2014;11:2566–2578. doi:10.1021/mp500298q24950236
  • Zhang Z, Cui C, Wei F, Lv H. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm. 2017;43:1276–1282. doi:10.1080/03639045.2017.131385728358225
  • Zhirnov AE, Demina TV, Krylova OO, Grozdova ID, Melik-Nubarov NS. Lipid composition determines interaction of liposome membranes with Pluronic L61. Biochim Biophys Acta. 2005;1720:73–83. doi:10.1016/j.bbamem.2005.11.01016405999
  • Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56:3626–3629.8705995
  • Hong W, Shi H, Qiao M, et al. PH-sensitive micelles for the intracellular co-delivery of curcumin and pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Sci Rep. 2017;7:42465. doi:10.1038/srep4246528195164
  • Liu Y, Fu S, Lin L, et al. Redox-sensitive pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation. Int J Nanomedicine. 2017;12:2635–2644. doi:10.2147/IJN.S12274628435248
  • Harada Y, Yamamoto T, Sakai M, et al. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles. Int J Pharm. 2011;404:271–280. doi:10.1016/j.ijpharm.2010.11.01621093556
  • Zhou Z, D’Emanuele A, Attwood D. Solubility enhancement of paclitaxel using a linear-dendritic block copolymer. Int J Pharm. 2013;452:173–179. doi:10.1016/j.ijpharm.2013.04.07523651641
  • Zhang Z, Lv H, Jia X, et al. Influence of vitamin E tocopherol polyethylene glycol succinate 1000 on intestinal absorption of icariside II. Pharmazie. 2012;67:59–62.22393832
  • Wang T, Shen L, Zhang Z, et al. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Deliv. 2017;24:1565–1573. doi:10.1080/10717544.2017.138673029029577
  • Shiraishi K, Sanada Y, Mochizuki S, et al. Determination of polymeric micelles’ structural characteristics, and effect of the characteristics on pharmacokinetic behaviors. J Control Release. 2015;203:77–84. doi:10.1016/j.jconrel.2015.02.01725687307
  • Awortwe C, Fasinu PS, Rosenkranz B. Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges. J Pharm Pharm Sci. 2014;17:1–19.24735758