130
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Comparative study of β-cyclodextrin, γ-cyclodextrin and 4-tert-butylcalix[8]arene ionophores as electroactive materials for the construction of new sensors for trazodone based on host-guest recognition

, , , &
Pages 2283-2293 | Published online: 11 Jul 2019

References

  • Carda-Broch S, Gil-Aguestí MT, Rambla-Alegre M, Monferrer-Pons L, Esteve-Romero JS. Determination of trazodone in urine and pharmaceuticals using micellar liquid chromatography with fluorescence detection. J Chromatogr A. 2007;1156(1–2):254–258. doi:10.1016/j.chroma.2007.02.11217451726
  • El-Gindy A, El-Zeany B, Awad T, Shabana MM. Spectrophotometric, spectrofluorimetric and lc determination of trazodone hydrochloride. J Pharm Biomed Anal. 2001;26(2):211–217. doi:10.1016/S0731-7085(01)00426-511470198
  • Davidoff G, Guarracini M, Roth E, Sliwa J, Yarkony G. Trazodone hydrochloride in the treatment of dysesthesia pain in traumatic myelopathy: a randomized, double-blind, placebo-controlled study. Pain. 1987;29(2):151–161.3302841
  • Bryan SG, Ereshefsky L. Antidepressant properties of trazodone. Clin Pharm. 1982;1(5):406–417.6764164
  • Chew RH, Hales RE, Yudofsky SC. What Your Patients Need to Know about Psychiatric Medications. Third edition. Arlington: American Psychiatric Publishing, Inc.; 2017.
  • Schatzberg AF, Nemeroff CB. The American Psychiatric Publishing Textbook Of Psychopharmacology. Washington, DC: American Psychiatric Pub; 2009.
  • Harikrishna K, Kumar SR, Seetharamappa J, Manjunatha DH. Sensitive extraction spectrophotometric methods for the determination of trazodone hydrochloride in pure and pharmaceutical formulations. J Serb Chem Soc. 2006;71(7):829–837. doi:10.2298/JSC0607829H
  • Yang GJ, Liu P, Qu XL, et al. Micellar‐enhanced spectrofluorimetric determination of trazodone hydrochloride in human urine and serum. Anal Lett. 2007;40(1):151–162. doi:10.1080/00032710600952598
  • Fujimori K, Sakata Y, Moriuchi‐Kawakami T, Shibutani Y. Enhanced chemiluminescence for trazodone trace analysis based on acidic permanganate oxidation in concurrent presence of rhodamine 6G. Luminescence. 2017;32(7):1240–1245. doi:10.1002/bio.331728422449
  • Kaçar C, Durmus Z, Kiliç E. Electrochemical behavior of trazodone at mercury and glassy carbon electrodes and voltammetric methods for its determination. Asian J Chem. 2014;26(7):1931. doi:10.14233/ajchem.2014.15559
  • Hegde RN, Shetti NP, Nandibewoor ST. Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode. Talanta. 2009;79(2):361–368. doi:10.1016/j.talanta.2009.03.06419559891
  • El-Enany N, Belal F, Rizk MS. Voltammetric analysis of trazodone HCl in pharmaceuticals and biological fluids. J Pharm Biomed Anal. 2002;30(2):219–226. doi:10.1016/S0731-7085(02)00327-812191706
  • Nandini RP, Deeptaunshu AP. Development and validation of liquid chromatographic method for trazodone hydrochloride. J Chem Pharm Res. 2010;2(2):478–488.
  • Mercolini L, Colliva C, Amore M, Fanali S, Raggi MA. HPLC analysis of the antidepressant trazodone and its main metabolite m-CPP in human plasma. J Pharm Biomed Anal. 2008;47(4–5):882–887. doi:10.1016/j.jpba.2008.02.02818400445
  • Li-Bo D, Rong-Hua Z, Huan-De L, Feng W, Ping-Fei F, Jiang L. Quantitative analysis of trazodone in human plasma by using HPLC-fluorescence detector coupled with strong cation exchange chromatographic column: application to a pharmacokinetic study in Chinese healthy volunteers. J Chromatogr B. 2014;944:43–48. doi:10.1016/j.jchromb.2013.11.013
  • Patel BN, Sharma N, Sanyal M, Shrivastav PS. High throughput and sensitive determination of trazodone and its primary metabolite, m-chlorophenylpiperazine, in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr B. 2008;871:44–54. doi:10.1016/j.jchromb.2008.06.046
  • Cosofret VV, Buck RP. Pharmaceutical Applications of Membrane Sensors. Boca Raton: CRC Press; 2017.
  • Gupta K, Nayak V, Agarwal A, Singhal B. Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen. 2011;14(4):284–302. doi:10.2174/13862071179522243721375501
  • García MS, Ortuño J, Albero MI, Cuartero M. Application of a trazodone-selective electrode to pharmaceutical quality control and urine analyses. Anal Bioanal Chem. 2009;394(6):1563–1567. doi:10.1007/s00216-009-2699-719238364
  • Ortuño JA, García MS, Albero MI, Cuartero M. A micro-coated wire ion-selective electrode for flow-injection analysis of trazodone in pharmaceuticals,” human urine and serum. Sens Lett. 2009;7(4):615–620. doi:10.1166/sl.2009.1120
  • Khalil S. Ion-selective electrode for the determination of trazodone in tablets. Analyst. 1999;124(2):139–142.10563052
  • Ammar R, Al-Warthan A. Ion selective PVC membrane electrodes for the determination of trazodone hydrochloride in pharmaceutical formulation. J Incl Phenom Macrocycl Chem. 2011;69(1–2):287–293. doi:10.1007/s10847-010-9846-9
  • Suzuki H, Nakagawa H, Mifune M, Saito Y. A widely applicable electrode sensitive to basic drugs based on poly (vinyl chloride) membrane plasticized with tricresyl phosphate. Chem Pharm Bull. 1993;41(6):1123–1126.8370111
  • Frömming K-H, Szejtli J. Cyclodextrins in Pharmacy. Berlin: Springer Science & Business Media; 1993.
  • Li S, William CP. Cyclodextrins and their applications in analytical chemistry. Chemical. Reviews. 1992;92(6):1457–1470.
  • Hassan SSM, Kamel AH, Abd El-Naby H. New potentiometric sensors based on selective recognition sites for determination of ephedrine in some pharmaceuticals and biological fluids. Talanta. 2013;103:330–336. doi:10.1016/j.talanta.2012.10.06723200395
  • Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–E357. doi:10.1208/pt06024316353992
  • Diamond D. 4t-BCs as ionophores in ion-selective electrodes; The past and the future of chemical sensing. Present at the  Annual Meeting of the Danish Electrochemical Society, Copenhagen, Denmark, October 9-10, 2014.
  • Khaled E, Khalil MM, Abed el Aziz GM. 4t-BC/Carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sens Actuators B. 2017;244:876–884. doi:10.1016/j.snb.2017.01.033
  • Abdelaziz A, Alrabiah H, Ghabbour H, Abounassif M, Mostafa GAE. Beta-and gamma-cyclodextrin ionophores as electroactive materials for construction of new polyvinyl chloride sensors for eletriptan based on host-guest recognition. Mater Express. 2018;8(2):182–188. doi:10.1166/mex.2018.1417
  • Alrabiah H, Al-majed A, Abounassif M, Mostafa GAE. Ionophore-based potentiometric pvc membrane sensors for determination of phenobarbitone in pharmaceutical formulations. Acta Pharm. 2016;66(4):503–514. doi:10.1515/acph-2016-004227749249
  • Ma TS, Hassan SSM. Organic Analysis Using Ion Selective Electrodes. Vol. 1&2 London: Academic press; 1982. doi:10.1016/0006-2944(75)90147-7
  • Yokota T, Tonozuka T, Shimura Y, Ichikawa K, Kamitori S, Sakano Y. Structures of thermoactinomyces vulgaris r-47 α-amylase ii complexed with substrate analogues. Biosci Biotechnol Biochem. 2001;65(3):619–626. doi:10.1271/bbb.65.61911330677
  • Feng L, Fawaz R, Hovde S, Sheng F, Nosrati M, Geiger JH. Crystal structures of escherichia coli branching enzyme in complex with cyclodextrins. Acta Crystallogr Sect D. 2015;54(40):6207–6218.
  • Rennie M, Fox G, Pérez J, Crowley PB. Auto‐regulated protein assembly on a supramolecular scaffold. Angew Chem. 2018;130(42):13960–13965. doi:10.1002/ange.v130.42
  • Case DA, Cheatham TE, Darden T, et al. The amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–1688. doi:10.1002/jcc.2029016200636
  • Radwan MO, Sonoda S, Ejima T, et al. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti–viral factor apolipoprotein b mrna-editing enzyme, catalytic polypeptide-like 3g. Bioorg Med Chem. 2016;24(18):4398–4405. doi:10.1016/j.bmc.2016.07.03027475536
  • Eugster R, Gehrig PM, Morf WE, Spichiger UE, Simon W. Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Anal Chem. 1991;63(20):2285–2289. doi:10.1021/ac00020a017
  • Buck RP, Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC recommendations 1994). Pure Appl Chem. 1994;66(12):2527–2536. doi:10.1351/pac199466122527
  • Gervais S, Damon S, Miloud R, et al. Trazodone composition for once a day administration, U.S. Patent 2010, 7,829,120.
  • Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes, part I. Inorganic cations (technical report). Pure Appl Chem. 2000;72(10):1851–2082. doi:10.1351/pac200072101851
  • Miller JN, Miller JC. Statistics and Chemometrics for Analytical Chemistry. London: Pearson Education; 2005.
  • The United States Pharmacopeial Convention. Trazodone Hydrochloride Tablets: revision bulletin. Available from: https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisions/trazadone-hcl-tabs-rb-notice.pdf. Accessed June 30, 2019.
  • Ahmadi P, Ghasemi JB. 3D-QSAR and docking studies of the stability constants of different guest molecules with beta-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;79(3–4):401–413. doi:10.1007/s10847-013-0363-5
  • Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H. Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;80(1–2):51–60. doi:10.1007/s10847-014-0385-7