112
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Antileishmanial and antitrypanosomal activity of symmetrical dibenzyl-substituted α,β-unsaturated carbonyl-based compounds

, ORCID Icon & ORCID Icon
Pages 1179-1185 | Published online: 24 Apr 2019

References

  • Barrett MP. The elimination of human African trypanosomiasis is in sight: report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl Trop Dis. 2018;12(12):e0006925. doi:10.1371/journal.pntd.000692530521522
  • Stich A, Barrett MP, Krishna S. Waking up to sleeping sickness. Trends Parasitol. 2003;19(5):195–197.12763420
  • Delespaux V, de Koning HP. Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat. 2007;10(1–2):30–50. doi:10.1016/j.drup.2007.02.00417409013
  • Kansiime F, Adibaku S, Wamboga C, et al. A multicentre, randomised, non-inferiority clinical trial comparing a nifurtimox-eflornithine combination to standard eflornithine monotherapy for late stage Trypanosoma brucei gambiense human African trypanosomiasis in Uganda. Parasit Vectors. 2018;11(1):105. doi:10.1186/s13071-018-2634-x29471865
  • Giordani F, Morrison LJ, Rowan TG, De Koning HP, Barrett MP. The animal trypanosomiases and their chemotherapy: a review. Parasitology. 2016;143(14):1862–1889. doi:10.1017/S003118201600126827719692
  • Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014;6:147–154. doi:10.2147/CLEP.S4426724833919
  • Aluru S, Hide M, Michel G, Banuls AL, Marty P, Pomares C. Multilocus microsatellite typing of leishmania and clinical applications: a review. Parasite. 2015;22:16. doi:10.1051/parasite/201501625950900
  • Leishmaniasis. World Health Organization (WHO). 2017 Available from: http://www.who.int/mediacentre/factsheets/fs375/en/. Accessed 119, 2017.
  • Martins-Melo FR, Lima Mda S, Ramos AN Jr., Alencar CH, Heukelbach J. Mortality and case fatality due to visceral leishmaniasis in Brazil: a nationwide analysis of epidemiology, trends and spatial patterns. PLoS One. 2014;9(4):e93770. doi:10.1371/journal.pone.009377024699517
  • Alcântara LM, Ferreira TCS, Gadelha FR, Miguel DC. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018;8(3):430–439. doi:10.1016/j.ijpddr.2018.09.00630293058
  • Pedrique B, Strub-Wourgaft N, Some C, et al. The drug and vaccine landscape for neglected diseases (2000-11): a systematic assessment. Lancet Glob Health. 2013;1(6):e371–e379. doi:10.1016/S2214-109X(13)70078-025104602
  • Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW. Pharmacological evaluation and docking studies of alpha,beta-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A(2), cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorg Med Chem. 2014;22(15):4151–4161. doi:10.1016/j.bmc.2014.05.05224938495
  • Qin H-L, Shang Z-P, Jantan I, et al. Molecular docking studies and biological evaluation of chalcone based pyrazolines as tyrosinase inhibitors and potential anticancer agents. RSC Adv. 2015;5(57):46330–46338. doi:10.1039/C5RA02995C
  • Bukhari SNA, Jantan I, Unsal Tan O, Sher M, Naeem-ul-Hassan M, Qin H-L. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J Agric Food Chem. 2014;62(24):5538–5547. doi:10.1021/jf501145b24901506
  • Jantan I, Bukhari SNA, Lajis NH, Abas F, Wai LK, Jasamai M. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. J Pharm Pharmacol. 2012;64(3):404–412. doi:10.1111/j.2042-7158.2011.01423.x22309272
  • Arshad L, Jantan I, Bukhari SNA, Haque MA. Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives, on immune cells: a review. Front Pharmacol. 2017;8:22. doi:10.3389/fphar.2017.0002228194110
  • Bukhari SNA, Jantan I, Masand VH, et al. Synthesis of α, β-unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: characterization, molecular modeling, QSAR studies and effect against amyloid β-induced cytotoxicity. Eur J Med Chem. 2014;83:355–365. doi:10.1016/j.ejmech.2014.06.03424980117
  • Zha G-F, Zhang C-P, Qin H-L, et al. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Bioorg Med Chem. 2016;24(10):2352–2359. doi:10.1016/j.bmc.2016.04.01527083471
  • Bridges DJ, Gould MK, Nerima B, Maser P, Burchmore RJ, de Koning HP. Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Mol Pharmacol. 2007;71(4):1098–1108. doi:10.1124/mol.106.03135117234896
  • Qin HL, Leng J, Zhang CP, et al. Synthesis of alpha,beta-unsaturated carbonyl-based compounds, oxime and oxime ether analogs as potential anticancer agents for overcoming cancer multidrug resistance by modulation of efflux pumps in tumor cells. J Med Chem. 2016;59(7):3549–3561. doi:10.1021/acs.jmedchem.6b0027627010345
  • Matovu E, Stewart ML, Geiser F, et al. Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryot Cell. 2003;2(5):1003–1008.14555482
  • Munday JC, Eze AA, Baker N, et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother. 2014;69(3):651–663. doi:10.1093/jac/dkt44224235095
  • Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989;75(6):985–989.2614608
  • Alzahrani KJH, Ali JAM, Eze AA, et al. Functional and genetic evidence that nucleoside transport is highly conserved in leishmania species: implications for pyrimidine-based chemotherapy. Int J Parasitol Drugs Drug Resist. 2017;7(2):206–226. doi:10.1016/j.ijpddr.2017.04.00328453984
  • Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against leishmania spp. Res Microbiol. 2004;155(4):224–230. doi:10.1016/j.resmic.2004.01.00115142618
  • Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68(2):139–147.9386789
  • Rodenko B, van der Burg AM, Wanner MJ, et al. 2,N6-disubstituted adenosine analogs with antitrypanosomal and antimalarial activities. Antimicrob Agents Chemother. 2007;51(11):3796–3802. doi:10.1128/AAC.00425-0717698622
  • Bukhari SNA, Lauro G, Jantan I, Bifulco G, Amjad MW. Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorg Med Chem. 2014;22(15):4151–4161. doi:10.1016/j.bmc.2014.05.05224938495
  • De Muylder G, Ang KKH, Chen S, Arkin MR, Engel JC, McKerrow JH. A screen against leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop Dis. 2011;5(7):e1253. doi:10.1371/journal.pntd.000137021811648