133
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Novel peptide myristoly-CM4 induces selective cytotoxicity in leukemia K562/MDR and Jurkat cells by necrosis and/or apoptosis pathway

, , , , , & show all
Pages 2153-2167 | Published online: 02 Jul 2019

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Szebeni GJ, Balog JA, Demjén A, et al. Imidazo[1,2-b]pyrazole-7-carboxamides induce apoptosis in human leukemia cells at nanomolar concentrations. Molecules. 2018;23(11):pii:E2845. doi:10.3390/molecules23112845
  • Fava C, Morotti A, Dogliotti I, et al. Update on emerging treatments for chronic myeloid leukemia. Expert Opin Emerg Drugs. 2015;20(2):183–196. doi:10.1517/14728214.2015.103121725826695
  • Kayser S, Levis MJ. Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol. 2018;180(4):484–500.5. doi:10.1111/bjh.1503229193012
  • Talati C, Pinilla-Ibarz J. Resistance in chronic myeloid leukemia: definitions and novel therapeutic agents. Curr Opin Hematol. 2018;25(2):154–161.29266016
  • Emadi A, Gore SD. Arsenic trioxide - An old drug rediscovered. Blood Rev. 2010;24(4–5):191–199.20471733
  • Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017;8(28):46635–46651.28422728
  • Riedl S, Leber R, Rinner B, et al. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. Biochim Biophys Acta. 2015;1848:2918–2931.26239537
  • Mader JS, Richardson A, Salsman J, et al. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Exp Cell Res. 2007;313(12):2634–2650.17570361
  • Cerón JM, Contreras-Moreno J, Puertollano E, et al. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides. 2010;31(8):1494–1503. doi:10.1016/j.peptides.2010.05.00820493222
  • Yan J, Liang X, Bai C, et al. NK-18, a promising antimicrobial peptide: anti-multidrug resistant leukemia cells and LPS neutralizing properties. Biochimie. 2018;147:143–152. doi:10.1016/j.biochi.2018.02.00129427740
  • Flores-Alvarez LJ, Guzmán-Rodríguez JJ, López-Gómez R, et al. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int J Biochem Cell Biol. 2018;99:10–18. doi:10.1016/j.biocel.2018.03.01329559362
  • Zhang J, Wu X, Zhang SQ. Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger. Biotechnol Lett. 2008;30(12):2157–2163. doi:10.1007/s10529-008-9819-x18696012
  • Li JF, Zhang J, Xu XZ, et al. The antibacterial peptide ABP-CM4: the current state of its production and applications. Amino Acids. 2012;42(6):2393–2402. doi:10.1007/s00726-011-0982-321805135
  • Lin QP, Zhou LF, Li NN, et al. Lipopolysaccharide neutralization by the antibacterial peptide CM4. Eur J Pharmacol. 2008;596(1–3):160–165. doi:10.1016/j.ejphar.2008.08.01718789317
  • Chen YQ, Min C, Sang M, et al. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides. 2010;31(8):1504–1510. doi:10.1016/j.peptides.2010.05.01020493915
  • Martin DD, Beauchamp E, Berthiaume LG. Post-translational myristoylation: fat matters in cellular life and death. Biochimie. 2011;93(1):18–31. doi:10.1016/j.biochi.2010.10.01821056615
  • Avrahami D, Shai Y. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem. 2004;279(13):12277–12285. doi:10.1074/jbc.M31226020014709550
  • Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci. 2010;345(2):160–167. doi:10.1016/j.jcis.2009.11.05720185142
  • Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides. 2015;71:128–140. doi:10.1016/j.peptides.2015.07.00926206286
  • Li C, Liu H, Yang Y, et al. N-myristoylation of antimicrobial peptide CM4 enhances its anticancer Aactivity by interacting with cell membrane and targeting mitochondria in breast cancer cells. Front Pharmacol. 2018;9:1297. doi:10.3389/fphar.2018.0129730483133
  • Baxter AA, Lay FT, Poon IKH, et al. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci. 2017;74:3809–3825. doi:10.1007/s00018-016-2440-628770291
  • Chen Y, Guarnieri MT, Vasil AI, et al. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother. 2017;51:1398–1406. doi:10.1128/AAC.00925-06
  • Han YY, Han DJ, Zong XC, et al. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells. Biochem Pharmacol. 2013;86(9):1254–1262. doi:10.1016/j.bcp.2013.08.00823962446
  • Dong X, Shi J, Zhou J, et al. Chemotherapy induces enhanced procoagulant activity through phosphatidylserine exposure in acute lymphoblastic leukemia. Thromb Res. 2013;132(5):614–620. doi:10.1016/j.thromres.2013.09.01024074703
  • Leite NB, Aufderhorst-Roberts A, Palma MS, et al. PE and PS lipids synergistically enhance membrane poration by apPeptide with anticancer properties. Biophys J. 2015;109(5):936–947. doi:10.1016/j.bpj.2015.07.03326331251
  • Sharma B, Kanwar SS. Phosphatidylserine: a cancer cell targeting biomarker. Semin Cancer Biol. 2018;52:17–25. doi:10.1016/j.semcancer.2017.08.01228870843
  • Resh MD. Covalent lipid modifications of proteins. Curr Biol. 2013;23(10):R431–R435. doi:10.1016/j.cub.2013.04.02423701681
  • Resh MD. Fatty acylation of proteins: the long and the short of it. Prog Lipid Res. 2016;63:120–131. doi:10.1016/j.plipres.2016.05.00227233110
  • Nelson AR, Borland L, Allbritton NL, et al. Myristoyl-based transport of peptides into living cells. Biochemistry. 2007;46(51):14771–14781. doi:10.1021/bi701295k18044965
  • Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol. 2016;60:89–96. doi:10.1016/j.semcdb.2016.07.01527423915
  • Zaro JL. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J. 2015;17(1):83–92. doi:10.1208/s12248-014-9670-z25269430
  • Huang Y, Feng Q, Yan Q, Hao X, Chen Y. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem. 2015;15(1):73–81.25382016
  • Scarfò L, Ghia P. Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett. 2013;155(1–2):36–39. doi:10.1016/j.imlet.2013.09.01524095849
  • Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res. 2018;10:403–416. doi:10.2147/CMAR.S15460829535553
  • Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of Bax protein for cancer therapy. Med Res Rev. 2016;36(2):313–341. doi:10.1002/med.2137926395559
  • Carter BZ, Mak PY, Mu H, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117. doi:10.1126/scitranslmed.aaf0746
  • Tzifi F, Economopoulou C, Gourgiotis D, et al. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol. 2012;2012:524308. doi:10.1155/2012/52430821941553
  • Paredes-Gamero EJ, Martin MN, Cappabianco FA, et al. Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochimica et Biophysica Acta. 2012;1820(7):1062–1072. doi:10.1016/j.bbagen.2012.02.01522425533
  • Wang C, Zhou Y. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci. 2013;92:1004–1014.23583573
  • Dewanjee S, Dua TK, Bhattacharjee N, et al. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules. 2017;22(6):pii: E871.
  • Min H, Niu M, Zhang W, et al. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein. PLoS One. 2017;12(11):e0187971.29121121