230
Views
9
CrossRef citations to date
0
Altmetric
Review

The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss

, &
Pages 4291-4303 | Published online: 18 Dec 2019

References

  • Knight KRG, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23(34):8588–8596. doi:10.1200/Jco.2004.00.535516314621
  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338. doi:10.3389/fncel.2017.0033829163050
  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications–a review. Mar Drugs. 2014;12(1):128–152. doi:10.3390/md1201012824402174
  • Kuroki T, Ikeda S, Okada T, et al. Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro:–astaxanthin colocalization with and action on mitochondria. J Assist Reprod Genet. 2013;30(5):623–631. doi:10.1007/s10815-013-9987-z23536152
  • Breglio AM, Rusheen AE, Shide ED, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654. doi:10.1038/s41467-017-01837-129162831
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.02525058905
  • Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–320. doi:10.1038/nrd169115789122
  • More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci. 2010;30(28):9500–9509. doi:10.1523/JNEUROSCI.1544-10.201020631178
  • Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706–721. doi:10.1124/pr.111.00563722659329
  • Ciarimboli G, Deuster D, Knief A, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–1180. doi:10.2353/ajpath.2010.09061020110413
  • Thomas AJ, Hailey DW, Stawicki TM, et al. Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line. J Neurosci. 2013;33(10):4405–4414. doi:10.1523/Jneurosci.3940-12.201323467357
  • La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463(2):149–167. doi:10.1016/j.abb.2007.04.02117531189
  • Mukherjea D, Jajoo S, Whitworth C, et al. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci. 2008;28(49):13056–13065. doi:10.1523/JNEUROSCI.1307-08.200819052196
  • Takumida M, Ishibashi T, Hamamoto T, Hirakawa K, Anniko M. Age-dependent changes in the expression of klotho protein, TRPV5 and TRPV6 in mouse inner ear. Acta Oto-Laryngol. 2009;129(12):1340–1350. doi:10.3109/00016480902725254
  • Takumida M, Anniko M. Expression of canonical transient receptor potential channel (TRPC) 1-7 in the mouse inner ear. Acta Oto-Laryngol. 2009;129(12):1351–1358. doi:10.3109/00016480902798350
  • Takumida M, Anniko M. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear. Acta Oto-Laryngol. 2010;130(2):196–203. doi:10.3109/00016480903013593
  • Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. P Natl Acad Sci USA. 2002;99(22):14298–14302. doi:10.1073/pnas.162491399
  • Waissbluth S, Daniel SJ. Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res. 2013;299:37–45. doi:10.1016/j.heares.2013.02.00223467171
  • Holzer AK, Samimi G, Katano K, et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol. 2004;66(4):817–823. doi:10.1124/mol.104.00119815229296
  • Budiman T, Bamberg E, Koepsell H, Nagel G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem. 2000;275(38):29413–29420. doi:10.1074/jbc.M00464520010889205
  • Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters-organic anion and cation transporters: molecular and cellular properties. Curr Top Membr. 2014;73:233–261. doi:10.1016/B978-0-12-800223-0.00006-224745985
  • Schaeffeler E, Hellerbrand C, Nies AT, et al. DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med. 2011;3:82. doi:10.1186/gm29822196450
  • Bleasby K, Castle JC, Roberts CJ, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006;36(10–11):963–988. doi:10.1080/0049825060086175117118916
  • Hellberg V, Gahm C, Liu W, Ehrsson H, Rask-Andersen H, Laurell G. Immunohistochemical localization of OCT2 in the cochlea of various species. Laryngoscope. 2015;125(9):E320–E325. doi:10.1002/lary.2530425892279
  • Lanvers-Kaminsky C, Sprowl JA, Malath I, et al. Human OCT2 variant c.808G > T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics. 2015;16(4):323–332. doi:10.2217/Pgs.14.18225823781
  • Samimi G, Safaei R, Katano K, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 2004;10(14):4661–4669. doi:10.1158/1078-0432.CCR-04-013715269138
  • Yoshizawa K, Nozaki S, Kitahara H, Ohara T et al. Copper efflux transporter (ATP7B) contributes to the acquisition of cisplatin-resistance in human oral squamous cell lines. Oncol Rep. 2007;18(4):987–991. PMID:1778636417786364
  • Ding D, He J, Allman BL, et al. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res. 2011;282(1–2):196–203. doi:10.1016/j.heares.2011.08.00221854840
  • Tadini-Buoninsegni F, Sordi G, Smeazzetto S, Natile G, Arnesano F. Effect of cisplatin on the transport activity of P-II-type ATPases. Metallomics. 2017;9(7):960–968. doi:10.1039/c7mt00100b28636017
  • Min XJ, Li H, Hou SC, et al. Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp Biol Med (Maywood). 2011;236(4):483–491. doi:10.1258/ebm.2011.01029721454376
  • Lee EL, Shimizu T, Ise T, Numata T, Kohno K, Okada Y. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells. J Cell Physiol. 2007;211(2):513–521. doi:10.1002/jcp.2096117186499
  • Planells‐Cases R, Lutter D, Guyader C, et al. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J. 2015;34(24):2993–3008. doi:10.15252/embj.20159240926530471
  • Yamasaki M, Makino T, Masuzawa T, et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer. 2011;104(4):707–713. doi:10.1038/sj.bjc.660607121206495
  • Korita PV, Wakai T, Shirai Y, et al. Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol Rep. 2010;23(4):965–972. doi:10.3892/or_0000072120204280
  • Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787(5):414–420. doi:10.1016/j.bbabio.2008.10.00519007744
  • Rybak LP, Ramkumar V. Ototoxicity. Kidney Int. 2007;72(8):931–935. doi:10.1038/sj.ki.500243417653135
  • Seidman MD, Quirk WS, Nuttall AL, Schweitzer VG. The protective effects of allopurinol and superoxide dismutase-polyethylene glycol on ischemic and reperfusion-induced cochlear damage. Otolaryngol Head Neck Surg. 1991;105(3):457–463. doi:10.1177/0194599891105003181945435
  • Kopke RD, Liu W, Gabaizadeh R, et al. Use of organotypic cultures of Corti’s organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am J Otol. 1997;18(5):559–571. PMID:9303151 9303151
  • Clerici WJ, Yang LH. Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function. Hearing Res. 1996;101(1–2):14–22. doi:10.1016/S0378-5955(96)00126-8
  • Rybak LP, Husain K, Morris C, Whitworth C, Somani S. Effect of protective agents against cisplatin ototoxicity. Am J Otol. 2000;21(4):513–520. PMID:1091269710912697
  • DeWoskin R, Riviere J. Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna. Toxicol Appl Pharmacol. 1992;112(2):182–189. doi:10.1016/0041-008x(92)90186-v1311464
  • Gao HM, Zhou H, Hong JS. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci. 2012;33(6):295–303. doi:10.1016/j.tips.2012.03.00822503440
  • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191(2):421–427. doi:10.1042/bj19104216263247
  • Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal. 2010;13(5):589–598. doi:10.1089/ars.2010.311020214492
  • Kim HJ, Lee JH, Kim SJ, et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci. 2010;30(11):3933–3946. doi:10.1523/JNEUROSCI.6054-09.201020237264
  • Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279(44):46065–46072. doi:10.1074/jbc.M40304620015326186
  • Kim HJ, Oh GS, Lee JH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res. 2011;21(6):944–956. doi:10.1038/cr.2011.2721321603
  • Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011;2:e180. doi:10.1038/cddis.2011.6321776018
  • Schmitt NC, Rubel EW, Nathanson NM. Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci. 2009;29(12):3843–3851. doi:10.1523/Jneurosci.5842-08.200919321781
  • Qi MH, Qiu Y, Zhou XY, et al. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin. Biochem Bioph Res Co. 2018;500(2):110–116. doi:10.1016/j.bbrc.2018.03.141
  • McNally JS, Saxena A, Cai H, Dikalov S, Harrison DG. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscl Throm Vas. 2005;25(8):1623–1628. doi:10.1161/01.ATV.0000170827.16296.6e
  • Lynch ED, Gu R, Pierce C, Kil J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res. 2005;201(1–2):81–89. doi:10.1016/j.heares.2004.08.00215721563
  • Kinugasa Y, Ogino K, Furuse Y, et al. Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts. Circ J. 2003;67(9):781–787. doi:10.1253/circj.67.78112939555
  • Jones QR, Warford J, Rupasinghe HP, Robertson GS. Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci. 2012;33(11):602–610. doi:10.1016/j.tips.2012.08.00222980637
  • Lee JS, Kang SU, Hwang HS, Pyun JH, Choung YH, Kim CH. Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK. Toxicol Lett. 2010;199(3):308–316. doi:10.1016/j.toxlet.2010.09.01320883750
  • Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, Nakayama M, Hara A. Ototoxicity: mechanisms of cochlear impairment and its prevention. Curr Med Chem. 2011;18(31):4866–4871. doi:10.2174/09298671179753525421919841
  • Cai JY, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Bba-Bioenergetics. 1998;1366(1–2):139–149. doi:10.1016/S0005-2728(98)00109-19714780
  • Lu YK, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci. 2006;89(2):515–523. doi:10.1093/toxsci/kfj03116251482
  • Liu H, Baliga M, Baliga R. Effect of cytochrome p450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res. 2002;22(2a):863–868. PMID:1201466312014663
  • Liu H, Baliga R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003;63(5):1687–1696. doi:10.1046/j.1523-1755.2003.00908.x12675844
  • Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxin. Free Radical Bio Med. 2007;43(7):1061–1075. doi:10.1016/j.freeradbiomed.2007.06.02117761302
  • Watanabe K, Hess A, Bloch W, Michel O. Expression of inducible nitric oxide synthase (iNOS/NOS II) in the vestibule of guinea pigs after the application of cisplatin. Anti-Cancer Drug. 2000;11(1):29–32. doi:10.1097/00001813-200001000-00005
  • Watanabe K, Inai S, Jinnouchi K, et al. Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res. 2002;22(6C):4081–4085. PMID:1255303612553036
  • Ruan RS. Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann N Y Acad Sci. 2002;962:260–274. doi:10.1111/j.1749-6632.2002.tb04073.x12076980
  • Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg. 2007;15(5):364–369. doi:10.1097/MOO.0b013e3282eee45217823555
  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226(1–2):157–167. doi:10.1016/j.heares.2006.09.01517113254
  • Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015;43(21):10083–10101. doi:10.1093/nar/gkv113626519467
  • Friedberg EC. A history of the DNA repair and mutagenesis field The discovery of base excision repair. DNA Repair (Amst). 2016;37:A35–A39. doi:10.1016/j.dnarep.2015.12.00326861186
  • Miller JH, Goodman MF. Tomas Lindahl: 2015 Nobel Laureate. DNA Repair (Amst). 2016;37:A29–A34. doi:10.1016/j.dnarep.2015.12.00626861184
  • Radman M. Mismatch repair earns Nobel Prize in Chemistry 2015 to Paul Modrich for a biochemical tour de force. DNA Repair (Amst). 2016;37:A22–A28. doi:10.1016/j.dnarep.2015.12.00426861183
  • Van Houten B. A tale of two cities: a tribute to Aziz Sancar’s Nobel Prize in Chemistry for his molecular characterization of NER. DNA Repair (Amst). 2016;37:A3–A13. doi:10.1016/j.dnarep.2015.12.00226861185
  • Cadet J, Davies KJA. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017;107:2–12. doi:10.1016/j.freeradbiomed.2017.03.03028363603
  • Santa-Gonzalez GA, Gomez-Molina A, Arcos-Burgos M, Meyer JN, Camargo M. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest. Redox Biol. 2016;9:124–133. doi:10.1016/j.redox.2016.07.00427479053
  • Van Houten B, Santa-Gonzalez GA, Camargo M. DNA repair after oxidative stress: current challenges. Curr Opin Toxicol. 2018;7:9–16. doi:10.1016/j.cotox.2017.10.00929159324
  • Kim HJ, Oh GS, Shen A, et al. Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment. Cell Death Dis. 2014;5:e1292.24922076
  • Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-induced ototoxicity: updates on molecular targets. Trends Mol Med. 2019;S1471-4914(19):30210–33012. doi:10.1016/j.molmed.2019.08.002
  • Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000;18(4):160–167. doi:10.1016/S0167-7799(00)01433-510740262
  • Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell Mol Neurobiol. 1998;18(6):667–682. doi:10.1023/A:10202219191549876873
  • Kim SH, Kim H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients. 2018;10(9). doi:10.3390/nu10091137
  • Bae JW, Kim MJ, Jang CG, Lee SY. Protective effects of heme oxygenase-1 against MPP+-induced cytotoxicity in PC-12 cells. Neurol Sci. 2010;31(3):307–313. doi:10.1007/s10072-010-0216-620127499
  • Borlongan CV, Kanning K, Poulos SG, Freeman TB, Cahill DW, Sanberg PR. Free radical damage and oxidative stress in Huntington’s disease. J Fla Med Assoc. 1996;83(5):335–341. PMID: 86669728666972
  • Ferrante RJ, Browne SE, Shinobu LA, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–2074.9349552
  • Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, Packer L, Sohal RS. Effect of anti-oxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Radical Bio Med. 2005;39(4):549–557. doi:10.1016/j.freeradbiomed.2005.04.00816043026
  • Chang CH, Chen CY, Chiou JY, Peng RY, Peng CH. Astaxanthine secured apoptotic death of PC12 cells induced by beta-amyloid peptide 25-35: its molecular action targets. J Med Food. 2010;13(3):548–556. doi:10.1089/jmf.2009.129120521980
  • Che HX, Li Q, Zhang TT, et al. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s disease in APP/PS1 double-transgenic mice. J Agr Food Chem. 2018;66(19):4948–4957. doi:10.1021/acs.jafc.8b0098829695154
  • Lee DH, Kim CS, Lee YJ. Astaxanthin protects against MPTP/MPP plus -induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol. 2011;49(1):271–280. doi:10.1016/j.fct.2010.10.02921056612
  • Kim JH, Choi W, Lee JH, et al. Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways. J Microbiol Biotechn. 2009;19(11):1355–1363. doi:10.4014/jmb.0906.06003
  • Al-Amin MM, Reza HM, Saadi HM, et al. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. Eur J Pharmacol. 2016;777:60–69. doi:10.1016/j.ejphar.2016.02.06226927754
  • Tso Mark OM, Lam Tim-Tak. Method of retarding and ameliorating central nervous system and eye damage. Google Patents 1996;167.
  • Shen H, Kuo CC, Chou J, et al. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009;23(6):1958–1968. doi:10.1096/fj.08-12328119218497
  • Wu W, Wang X, Xiang Q, et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5(1):158–166. doi:10.1039/c3fo60400d24326685
  • Gross GJ, Hazen SL, Lockwood SF. Seven day oral supplementation with Cardax (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats. Mol Cell Biochem. 2006;283(1–2):23–30. doi:10.1007/s11010-006-2217-616444582
  • Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 2008;101(10A):58D–68D. doi:10.1016/j.amjcard.2008.02.01018157966
  • Nakao R, Nelson OL, Park JS, Mathison BD, Thompson PA, Chew BP. Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice. Anticancer Res. 2010;30(7):2721–2725. PMID:2068300420683004
  • Abdelzaher LA, Imaizumi T, Suzuki T, Tomita K, Takashina M, Hattori Y. Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations. Life Sci. 2016;150:24–31. doi:10.1016/j.lfs.2016.02.08726924495
  • Alam MN, Hossain MM, Rahman MM, et al. Astaxanthin prevented oxidative stress in heart and kidneys of isoproterenol-administered aged rats. J Diet Suppl. 2018;15(1):42–54. doi:10.1080/19390211.2017.132107828489954
  • Pongkan W, Takatori O, Ni YH, et al. beta-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice. Mol Nutr Food Res. 2017;61(10). doi:10.1002/mnfr.201601077
  • Fan CD, Sun JY, Fu XT, et al. Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Front Physiol. 2017;8. doi:10.3389/fphys.2017.01041
  • Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health? Food Nutr Res. 2015;59:26762. doi:10.3402/fnr.v59.2676225660385
  • Ni Y, Nagashimada M, Zhuge F, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E. Sci Rep. 2015;5:17192. doi:10.1038/srep1719226603489
  • Zhang J, Zhang S, Bi J, Gu J, Deng Y, Liu C. Astaxanthin pretreatment attenuates acetaminophen-induced liver injury in mice. Int Immunopharmacol. 2017;45:26–33. doi:10.1016/j.intimp.2017.01.02828152447
  • Takahashi K, Watanabe M, Takimoto T, Akiba Y. Uptake and distribution of astaxanthin in several tissues and plasma lipoproteins in male broiler chickens fed a yeast (Phaffia rhodozyma) with a high concentration of astaxanthin. Brit Poultry Sci. 2004;45(1):133–138. doi:10.1080/0007166041000166895015115211
  • Rao AR, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga haematococcus pluvialis. J Agr Food Chem. 2013;61(16):3842–3851. doi:10.1021/jf304609j23473626
  • Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab. 2010;7:18. doi:10.1186/1743-7075-7-18
  • Tominaga K, Hongo N, Fujishita M, Takahashi Y, Adachi Y. Protective effects of astaxanthin on skin deterioration. J Clin Biochem Nutr. 2017;61(1):33–39. doi:10.3164/jcbn.17-3528751807
  • Yoon HS, Cho HH, Cho S, Lee SR, Shin MH, Chung JH. Supplementating with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and −12 expression: a comparative study with placebo. J Med Food. 2014;17(7):810–816. doi:10.1089/jmf.2013.306024955642
  • Tominaga K, Hongo N, Karato M, Yamashita E. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol. 2012;59(1):43–47. doi:10.18388/abp.2012_216822428137
  • Fang Q, Guo S, Zhou H, Han R, Wu P, Han C. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep. 2017;7:41440. doi:10.1038/srep4144028128352
  • Meephansan J, Rungjang A, Yingmema W, Deenonpoe R, Ponnikorn S. Effect of astaxanthin on cutaneous wound healing. Clin Cosmet Investig Dermatol. 2017;10:259–265. doi:10.2147/CCID.S142795
  • Zhang L, Wang H. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs. 2015;13(7):4310–4330. doi:10.3390/md1307431026184238
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi:10.1038/nrc298121258394
  • Kavitha K, Kowshik J, Kishore TK, Baba AB, Nagini S. Astaxanthin inhibits NF-kappaB and Wnt/beta-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim Biophys Acta. 2013;1830(10):4433–4444. doi:10.1016/j.bbagen.2013.05.03223726989
  • Nagendraprabhu P, Sudhandiran G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs. 2011;29(2):207–224. doi:10.1007/s10637-009-9342-519876598
  • Song XD, Zhang JJ, Wang MR, Liu WB, Gu XB, Lv CJ. Astaxanthin induces mitochondria-mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells. Biol Pharm Bull. 2011;34(6):839–844. doi:10.1248/bpb.34.83921628881
  • Zhang X, Zhao WE, Hu L, Zhao L, Huang J. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARgamma) in K562 cancer cells. Arch Biochem Biophys. 2011;512(1):96–106. doi:10.1016/j.abb.2011.05.00421620794
  • Su XZ, Chen R, Wang CB, Ouyang XL, Jiang Y, Zhu MY. Astaxanthin combine with human serum albumin to abrogate cell proliferation, migration, and drug-resistant in human ovarian carcinoma SKOV3 cells. Anticancer Agents Med Chem. 2019;19(6):792–801. doi:10.2174/187152061966619022512300330799797
  • Goto S, Kogure K, Abe K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Bba-Biomembranes. 2001;1512(2):251–258. doi:10.1016/S0005-2736(01)00326-111406102
  • Santa-Maria AR, Walter FR, Valkai S, et al. Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models. Bba-Biomembranes. 2019;1861(9):1579–1591. doi:10.1016/j.bbamem.2019.07.00831301276
  • Matsushita Y, Suzuki R, Nara E, Yokoyama A, Miyashita K. Anti-oxidant activity of polar carotenoids including astaxanthin-β-glucoside from marine bacterium on PC liposomes. Fish Sci. 2000;66(5):980–985. doi:10.1046/j.1444-2906.2000.00155.x
  • Greene LS. Asthma and oxidant stress - nutritional, environmental, and genetic risk-factors. J Am Coll Nutr. 1995;14(4):317–324. doi:10.1080/07315724.1995.107185168568107
  • Dekkers JC, van Doornen LJP, Kemper HCG. The role of anti-oxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 1996;21(3):213–238. doi:10.2165/00007256-199621030-000058776010
  • Bennedsen M, Wang X, Willen R, Wadstrom T, Andersen LP. Treatment of H-pylori infected mice with anti-oxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol Lett. 1999;70(3):185–189. doi:10.1016/S0165-2478(99)00145-510656672
  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci. 2006;46(2):185–196. doi:10.1080/10408690590957188
  • Wolf AM, Asoh S, Hiranuma H, et al. Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem. 2010;21(5):381–389. doi:10.1016/j.jnutbio.2009.01.01119423317
  • Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011;16(4):355–364.22214255
  • Osterlie M, Bjerkeng B, Liaaen-Jensen S. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J Nutr Biochem. 2000;11(10):482–490. doi:10.1016/S0955-2863(00)00104-2 PMID:2221425511120445
  • Yan TT, Zhao Y, Zhang X, Lin XT. Astaxanthin inhibits acetaldehyde-induced cytotoxicity in sh-sy5y cells by modulating Akt/CREB and p38MAPK/ERK signaling pathways. Mar Drugs. 2016;14(3):56. doi:10.3390/md14030056
  • Li JJ, Wang F, Xia YJ, et al. Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs. 2015;13(6):3368–3387. doi:10.3390/md1306336826023842
  • Yang X, Guo AL, Pang YP, et al. Astaxanthin attenuates environmental tobacco smoke-induced cognitive deficits: a critical role of p38 MAPK. Mar Drugs. 2019;17(1):24. doi:10.3390/md17010024
  • Niu TT, Xuan RR, Jiang LG, et al. Astaxanthin induces the Nrf2/HO-1 anti-oxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J Agr Food Chem. 2018;66(6):1551–1559. doi:10.1021/acs.jafc.7b0549329381356
  • Wu Q, Zhang XS, Wang HD, et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the anti-oxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs. 2014;12(12):6125–6141. doi:10.3390/md1212612525528957
  • Wu ML, Ho YC, Yet SF. A central role of heme oxygenase-1 in cardiovascular protection. Antioxid Redox Sign. 2011;15(7):1835–1846. doi:10.1089/ars.2010.3726
  • Dinkova-Kostova AT, Talalay P. NAD(P)H:quinoneacceptor oxidoreductase 1 (NQO1), a multifunctional anti-oxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501(1):116–123. doi:10.1016/j.abb.2010.03.01920361926
  • Pan L, Zhou Y, Li XF, Wan QJ, Yu LH. Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of anti-oxidant defense pathway after stroke in rats. Brain Res Bull. 2017;130:211–220. doi:10.1016/j.brainresbull.2017.01.02428161193
  • Tripathi DN, Jena GB. Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutat Res-Gen Tox En. 2010;696(1):69–80. doi:10.1016/j.mrgentox.2009.12.014
  • Nakanishi A, Wada Y, Kitagishi Y, Matsuda S. Link between PI3K/AKT/PTEN pathway and NOX protein in diseases. Aging Dis. 2014;5(3):203–211. doi:10.14336/Ad.2014.050020324900943
  • Wang CM, Cai XL, Wen QP. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway. Mol Med Rep. 2016;13(5):4073–4078. doi:10.3892/mmr.2016.503527035665
  • Zuluaga M, Barzegari A, Letourneur D, Gueguen V, Pavon-Djavid G. Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: chemical, biological, and molecular anti-oxidant activity evaluation. Oxid Med Cell Longev. 2017;2017:1–15. doi:10.1155/2017/8073798
  • Li ZR, Dong X, Liu HL, et al. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated Phase II enzymes through activation of PI3K/Akt. Mol Vis. 2013;19:1656–1666.23901249
  • Ye QY, Zhang XD, Huang BX, Zhu YG, Chen XC. Astaxanthin suppresses MPP+-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Mar Drugs. 2013;11(4):1019–1034. doi:10.3390/md1104101923538867
  • Takemoto Y, Hirose Y, Sugahara K, Hashimoto M, Hara H, Yamashita H. Protective effect of an astaxanthin nanoemulsion against neomycin-induced hair-cell damage in zebrafish. Auris Nasus Larynx. 2018;45(1):20–25. doi:10.1016/j.anl.2017.02.00128274503