85
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Structural Insight into the Mechanism of 4-Aminoquinolines Selectivity for the alpha2A-Adrenoceptor

, , , , , , ORCID Icon, , ORCID Icon, , , , , , , , , & show all
Pages 2585-2594 | Published online: 03 Jul 2020

References

  • FallareroA, PohjanoksaK, WisselG, et al. High-throughput screening with a miniaturized radioligand competition assay identifies new modulators of human alpha2-adrenoceptors. ‎Eur J Pharm Sci. 2012;47(5):941–951. doi:10.1016/j.ejps.2012.08.02122982401
  • BrosdaJ, JantschakF, PertzHH. alpha2-adrenoceptors are targets for antipsychotic drugs. Psychopharmacology (Berl). 2014;231(5):801–812. doi:10.1007/s00213-014-3459-824488407
  • UysMM, ShahidM, HarveyBH. Therapeutic potential of selectively targeting the alpha2C-adrenoceptor in cognition, depression, and schizophrenia-new developments and future perspective. Front Psychiatry. 2017;8:144. doi:10.3389/fpsyt.2017.0014428855875
  • ScheininM, SallinenJ, HaapalinnaA. Evaluation of the alpha2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci. 2001;68(19–20):2277–2285. doi:10.1016/S0024-3205(01)01016-511358337
  • AdamsA, JarrottB, ElmesBC, DennyWA, WakelinLP. Interaction of DNA-intercalating antitumor agents with adrenoceptors. Mol Pharmacol. 1985;27(4):480–491.2984540
  • AdamsA, JarrottB, DennyWA, WakelinLP. Differences between central and peripheral rat alpha-adrenoceptors revealed using binuclear ligands. Eur J Pharmacol. 1986;127(1–2):27–35. doi:10.1016/0014-2999(86)90202-53019726
  • ConnPJ, LindsleyCW, MeilerJ, NiswenderCM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov. 2014;13(9):692–708. doi:10.1038/nrd430825176435
  • HöckerJ, WeberB, TonnerPH, et al. Meperidine, remifentanil and tramadol but not sufentanil interact with α2-adrenoceptors in α2A-, α2B- and α2C-adrenoceptor knock out mice brain. Eur J Pharmacol. 2008;582(1–3):70–77. doi:10.1016/j.ejphar.2007.12.02218234187
  • DeshpandeSM, SinghAK. Synthesis of some N,N’-bis-(9-acridino)-, -diaminoalkanes dihydrochloride as potential antibacterial, antitubercular and antileprotics. Chem Pharm Bull (Tokyo). 1972;20(1):206–208. doi:10.1248/cpb.20.2065014545
  • LopataMA, ClevelandDW, Sollner-WebbB. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984;12(14):5707–5717. doi:10.1093/nar/12.14.57076589587
  • AbrahamMJ, MurtolaT, SchulzR, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi:10.1016/j.softx.2015.06.001
  • LeeJ, ChengX, SwailsJM, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. 2016;12(1):405–413. doi:10.1021/acs.jctc.5b0093526631602
  • KimS, LeeJ, JoS, BrooksCL 3rd, LeeHS, ImW. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem. 2017;38(21):1879–1886. doi:10.1002/jcc.v38.2128497616
  • LensingCJ, FreemanKT, SchnellSM, AdankDN, SpethRC, Haskell-LuevanoC. An in vitro and in vivo investigation of bivalent ligands that display preferential binding and functional activity for different melanocortin receptor homodimers. J Med Chem. 2016;59(7):3112–3128. doi:10.1021/acs.jmedchem.5b0189426959173
  • FedermanAD, ConklinBR, SchraderKA, ReedRR, BourneHR. Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits. Nature. 1992;356(6365):159–161. doi:10.1038/356159a01312225
  • WadeSM, LanK, MooreDJ, NeubigRR. Inverse agonist activity at the alpha(2A)-adrenergic receptor. Mol Pharmacol. 2001;59(3):532–542. doi:10.1124/mol.59.3.53211179449
  • NyronenT, PihlavistoM, PeltonenJM, et al. Molecular mechanism for agonist-promoted alpha(2A)-adrenoceptor activation by norepinephrine and epinephrine. Mol Pharmacol. 2001;59(5):1343–1354. doi:10.1124/mol.59.5.134311306720
  • PeltonenJM, NyronenT, WursterS, et al. Molecular mechanisms of ligand-receptor interactions in transmembrane domain V of the alpha2A-adrenoceptor. Br J Pharmacol. 2003;140(2):347–358. doi:10.1038/sj.bjp.070543912970108
  • SurgandJS, RodrigoJ, KellenbergerE, RognanD. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins. 2006;62(2):509–538. doi:10.1002/prot.2076816294340
  • KooistraAJ, KuhneS, De EschIJ, LeursR, De GraafC. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol. 2013;170(1):101–126. doi:10.1111/bph.1224823713847
  • DrorRO, PanAC, ArlowDH, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A. 108(32):13118–13123. doi:10.1073/pnas.1104614108
  • HagaK, KruseAC, AsadaH, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482(7386):547–551. doi:10.1038/nature1075322278061
  • ZhangL, AndersonRJL, AhmedI, et al. Manipulating cofactor binding thermodynamics in an. artificial oxygen transport protein. Biochemistry. 2011;50(47):10254–10261. doi:10.1021/bi201242a22004125