133
Views
4
CrossRef citations to date
0
Altmetric
Original Research

The Antagonist of Retinoic Acid Receptor α, ER-50891 Antagonizes the Inhibitive Effect of All-Trans Retinoic Acid and Rescues Bone Morphogenetic Protein 2-Induced Osteoblastogenic Differentiation

, , , ORCID Icon, , ORCID Icon & show all
Pages 297-308 | Published online: 22 Jan 2020

References

  • WakimotoM, MatsumuraT, UenoT, MizukawaN, YanagiY, IidaS. Bone quality and quantity of the anterior maxillary trabecular bone in dental implant sites. Clin Oral Implants Res. 2012;23(11):1314–1319. doi:10.1111/clr.2012.23.issue-1122151688
  • ZhengY, WuG, ZhaoJ, WangL, SunP, GuZ. rhBMP2/7 heterodimer: an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers. Tissue Eng Part A. 2010;16(3):879–887.19814588
  • RaggattLJ, PartridgeNC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–25108.20501658
  • LiJ, LiuXY, ZuoB, ZhangL. The role of bone marrow microenvironment in governing the balance between osteoblastogenesis and adipogenesis. Aging Dis. 2016;7(4):514–525.27493836
  • Aghebati-MalekiL, DolatiS, ZandiR, et al. Prospect of mesenchymal stem cells in therapy of osteoporosis: a review. J Cell Physiol. 2019;234(6):8570–8578.30488448
  • WangA, DingX, ShengS, YaoZ. Retinoic acid inhibits osteogenic differentiation of rat bone marrow stromal cells. Biochem Biophys Res Commun. 2008;375(3):435–439.18718446
  • NatesanS, WriceNL, ChristyRJ. Peroxisome proliferator-activated receptor-alpha agonist and all-trans retinoic acid induce epithelial differentiation of subcutaneous adipose-derived stem cells from debrided burn skin. J Cell Biochem. 2019;120(6):9213–9229.30556162
  • AouadP, SaikaliM, Abdel-SamadR, et al. Antitumor activities of the synthetic retinoid ST1926 in two-dimensional and three-dimensional human breast cancer models. Anticancer Drugs. 2017;28(7):757–770.28471809
  • SmutnaM, PriebojovaJ, VecerkovaJ, HilscherovaK. Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis. Ecotoxicol Environ Saf. 2017;138:32–38.27992848
  • NapoliJL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta. 2012;1821(1):152–167. doi:10.1016/j.bbalip.2011.05.00421621639
  • CentrittoF, ParoniG, BolisM, et al. Cellular and molecular determinants of all- trans retinoic acid sensitivity in breast cancer: luminal phenotype and RAR α expression. EMBO Mol Med. 2015;7(7):950–972. doi:10.15252/emmm.20140467025888236
  • PayneCM, BurkeLP, CavanaghB, O’TooleD, CryanSA, KellyHM. Evaluation of the immunomodulatory effects of all-trans retinoic acid solid lipid nanoparticles and human mesenchymal stem cells in an A549 epithelial cell line model. Pharm Res. 2019;36(4):50.30761406
  • KaneMA, FoliasAE, WangC, NapoliJL. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. 2010;24(3):823–832.19890016
  • PeacockA, LeungJ, LarneyS, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113:1905–1926.29749059
  • TurnerRT. Skeletal response to alcohol. Alcohol Clin Exp Res. 2000;24(11):1693–1701.11104117
  • SchnitzlerCM, MesquitaJM, ShiresR. Cortical and trabecular bone microarchitecture and turnover in alcohol-induced chronic pancreatitis: a histomorphometric study. J Bone Miner Metab. 2010;28(4):456–467.20101423
  • BackoH, LoveJ. Alcohol-induced osteopenia among in-custody and homicide deaths from the harris county institute of forensic sciences. J Forensic Sci. 2013;58(4):1055–1060.23601170
  • UlhoiMP, MeldgaardK, SteinicheT, OdgaardA, VesterbyA. Chronic alcohol abuse leads to low bone mass with no general loss of bone structure or bone mechanical strength. J Forensic Sci. 2017;62:131–136.27864963
  • KanisJA, JohanssonH, JohnellO, et al. Alcohol intake as a risk factor for fracture. Osteoporosis Int. 2005;16(7):737–742.
  • MichaelAR, BengtsonJD. Chronic alcoholism and bone remodeling processes: caveats and considerations for the forensic anthropologist. J Forensic Leg Med. 2015;38:87–92.26724563
  • Gonzalez-ReimersE, Quintero-PlattG, Rodriguez-RodriguezE, Martinez-RieraA, Alvisa-NegrinJ, Santolaria-FernandezF. Bone changes in alcoholic liver disease. World J Hepatol. 2015;7(9):1258–1264.26019741
  • CamilliJA, da CunhaMR, BertranCA, KawachiEY. Subperiosteal hydroxyapatite implants in rats submitted to ethanol ingestion. Arch Oral Biol. 2004;49(9):747–753.15275862
  • LimaCC, SilvaTD, SantosL, et al. Effects of ethanol on the osteogenesis around porous hydroxyapatite implants. Braz J Biol. 2011;71(1):115–119.21437407
  • TrevisiolCH, TurnerRT, PfaffJE, et al. Impaired osteoinduction in a rat model for chronic alcohol abuse. Bone. 2007;41(2):175–180.17567549
  • CarvalhoIC, Martinelli CdaS, MilhanNV, et al. Prenatal alcohol exposure reduces mandibular calcium and phosphorus concentrations in newborn rats. J Oral Sci. 2016;58(3):439–444.27665985
  • Lo-CocoF, AvvisatiG, VignettiM, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–121.23841729
  • SmithMA, AdamsonPC, BalisFM, et al. Phase I and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients with cancer. J Clin Oncol. 1992;10(11):1666–1673.1403049
  • MuindiJR, FrankelSR, HuseltonC, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res. 1992;52(8):2138–2142.1559217
  • SaneshigeS, ManoH, TezukaK, et al. Retinoic acid directly stimulates osteoclastic bone resorption and gene expression of cathepsin K/OC-2. Biochem J. 1995;309(Pt 3):721–724.7639684
  • TomitaA, KiyoiH, NaoeT. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O 3) in acute promyelocytic leukemia. Int J Hematol. 2013;97(6):717–725.23670176
  • BenbrookDM, ChambonP, Rochette-EglyC, Asson-BatresMA. History of retinoic acid receptors. Subcell Biochem. 2014;70:1–20.24962878
  • YangL, OstrowskiJ, ReczekP, BrownP. The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene. 2001;20(55):8025–8035.11753686
  • NunesI, KojimaS, RifkinDB. Effects of endogenously activated transforming growth factor-beta on growth and differentiation of retinoic acid-treated HL-60 cells. Cancer Res. 1996;56(3):495–499.8564960
  • Fernandez-CalottiP, Pastor-AngladaM. All-trans-retinoic acid promotes trafficking of human concentrative nucleoside transporter-3 (hCNT3) to the plasma membrane by a TGF-beta1-mediated mechanism. J Biol Chem. 2010;285(18):13589–13598.20172853
  • BessaPC, CasalM, ReisRL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2(2–3):81–96.18383454
  • BessaPC, CasalM, ReisRL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med. 2008;2(1):1–13.18293427
  • BiW, GuZ, ZhengY, WangL, GuoJ, WuG. Antagonistic and synergistic effects of bone morphogenetic protein 2/7 and all-trans retinoic acid on the osteogenic differentiation of rat bone marrow stromal cells. Dev Growth Differ. 2013;55(9):744–754.24111806
  • BiW, GuZ, ZhengY, ZhangX, GuoJ, WuG. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS One. 2013;8(10):e78198.24205156
  • LiuY, MaX, GuoJ, et al. All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther. 2018;12:3419–3430.
  • KamRK, DengY, ChenY, ZhaoH. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2012;2(1):11.22439772
  • DoiA, IshikawaK, ShibataN, et al. Enhanced expression of retinoic acid receptor alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acinar structures. Mol Oncol. 2015;9(2):355–364.25300573
  • DiverioD, Lo CocoF, D’AdamoF, et al. Identification of DNA rearrangements at the retinoic acid receptor-alpha (RAR-alpha) locus in all patients with acute promyelocytic leukemia (APL) and mapping of APL breakpoints within the RAR-alpha second intron. Italian cooperative study group “GIMEMA”. Blood. 1992;79(12):3331–3336.1317727
  • NittoT, SawakiK. Molecular mechanisms of the antileukemia activities of retinoid and arsenic. J Pharmacol Sci. 2014;126(3):179–185.25319615
  • O’ConnellPA, MadureiraPA, BermanJN, LiwskiRS, WaismanDM. Regulation of S100A10 by the PML-RAR-alpha oncoprotein. Blood. 2011;117(15):4095–4105.21310922
  • SaulleE, PetronelliA, PelosiE, et al. PML-RAR alpha induces the downmodulation of HHEX: a key event responsible for the induction of an angiogenetic response. J Hematol Oncol. 2016;9:33.27052408
  • ValiulieneG, TreigyteG, SavickieneJ, et al. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy. Biomed Pharmacother. 2016;79:62–70.27044813
  • FangC, JianZY, ShenXF, WeiXM, YuGZ, ZengXT. Promoter methylation of the retinoic acid receptor beta2 (RARbeta2) is associated with increased risk of breast cancer: a PRISMA compliant meta-analysis. PLoS One. 2015;10(10):e0140329.26451736
  • PurtonLE, DworkinS, OlsenGH, et al. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med. 2006;203(5):1283–1293.16682494
  • GreenAC, PoultonIJ, VrahnasC, et al. RARgamma is a negative regulator of osteoclastogenesis. J Steroid Biochem Mol Biol. 2015;150:46–53.25800721
  • GreenAC, KocovskiP, JovicT, et al. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res. 2017;350(1):284–297.27964926
  • GreenAC, Rudolph-StringerV, StraszkowskiL, et al. Retinoic acid receptor gamma activity in mesenchymal stem cells regulates endochondral bone, angiogenesis, and B lymphopoiesis. J Bone Miner Res. 2018;33(12):2202–2213.30040873
  • KitchingR, QiS, LiV, RaoufA, VaryCP, SethA. Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3-E1 cells. J Bone Miner Metab. 2002;20(5):269–280.12203032
  • YangL, Munoz-MedellinD, KimHT, OstrowskiJ, ReczekP, BrownPH. Retinoic acid receptor antagonist BMS453 inhibits the growth of normal and malignant breast cells without activating RAR-dependent gene expression. Breast Cancer Res Treat. 1999;56(3):277–291.10573118
  • LiY, WangJ, RenF, et al. Lactoferrin promotes osteogenesis through TGF-beta receptor II binding in osteoblasts and activation of canonical TGF-beta signaling in MC3T3-E1 cells and C57BL/6J mice. J Nutr. 2018;148(8):1285–1292.29931165
  • ShengN, XieZ, WangC, et al. Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci U S A. 2010;107(44):18886–18891.20956305
  • ChoongPF, MartinTJ, NgKW. Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts. J Orthop Res. 1993;11(5):638–647.8410463
  • GazitD, EbnerR, KahnAJ, DerynckR. Modulation of expression and cell surface binding of members of the transforming growth factor-beta superfamily during retinoic acid-induced osteoblastic differentiation of multipotential mesenchymal cells. Mol Endocrinol. 1993;7(2):189–198.8385738
  • HisadaK, HataK, IchidaF, et al. Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab. 2013;31(1):53–63.23014973
  • KarakidaT, YuiR, SuzukiT, FukaeM, OidaS. Retinoic acid receptor gamma-dependent signaling cooperates with BMP2 to induce osteoblastic differentiation of C2C12 cells. Connect Tissue Res. 2011;52(5):365–372.21401418
  • UchibeK, SonJ, LarmourC, PacificiM, Enomoto-IwamotoM, IwamotoM. Genetic and pharmacological inhibition of retinoic acid receptor gamma function promotes endochondral bone formation. J Orthop Res. 2017;35(5):1096–1105.27325507
  • HenningP, ConawayHH, LernerUH. Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne). 2015;6:31.25814978