134
Views
1
CrossRef citations to date
0
Altmetric
Review

Attractor – a new turning point in drug discovery

, , , &
Pages 2957-2968 | Published online: 22 Aug 2019

References

  • Kauffman SA. The Origins of Order: Self-Organization and Selection in Evolution. New York: New York Oxford University Press; 1993.
  • Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA. 2004;101(14):4781–4786. doi:10.1073/pnas.030593710115037758
  • Huang S. Cell fates as attractors: stability and flexibility of cellular phenotypes In: Aird WC, editor. Endothelial Biomedicine. Cambridge: Cambridge University Press; 2007;1767–1779.
  • Cho SH, Park SM, Lee HS, Lee HY, Cho KH. Attractor landscape analysis of colorectal tumorigenesis and its reversion. BMC Syst Biol. 2016;10(1):96. doi:10.1186/s12918-016-0304-127765040
  • Zañudo JG, Albert R. Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol. 2015;11(4):e1004193. doi:10.1371/journal.pcbi.100419325849586
  • Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009;20(7):869–876. doi:10.1016/j.semcdb.2009.07.00319595782
  • Huang S, Kauffman S. How to escape the cancer attractor: rationale and limitations of multi-target drugs. Semin Cancer Biol. 2013;23(4):270–278. doi:10.1016/j.semcancer.2013.06.00323792873
  • Zhang DZ. Introduction to Pharmacy. 4th ed. Beijing: China Medical Science Press; 2011.
  • Nie SF, Li JW, Wang XD. Drug Discovery and Invention History. 1st ed. Shanghai: Shanghai Second Military Medical University Press; 2013.
  • Fischer E. Einflus der Configuration auf die Wirkung der Enzyme [Influence of the configuration on the action of the enzymes]. Eur J Inorg Chem. 2010;27(3):2985–2993. German.
  • Maehle AH, Prüll CR, Halliwell RF. The emergence of the drug receptor theory. Nat Rev Drug Discov. 2002;1(8):637–641. doi:10.1038/nrd87512402503
  • Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol. 1948;153(3):586–600. doi:10.1152/ajplegacy.1948.153.3.58618882199
  • Zhao J. Advances in multi-target and multi-component drug research based on systems biology. Beijing Chin Pharm J. 2010;45(15):1121–1126. Chinese.
  • Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18(9–10):495–501. doi:10.1016/j.drudis.2013.01.00823340113
  • Collis MC. Integrative pharmacology and drug discovery-is the tide finally turning?. Nat Rev Drug Discov. 2006;5(5):377–379. doi:10.1038/nrd203616628199
  • Maggiora GM. The reductionist paradox: are the laws of chemistry and physics sufficient for the discovery of new drugs? J Comput Aided Mol Des. 2011;25(8):699–708. doi:10.1007/s10822-011-9447-821698487
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715. doi:10.1038/nrd147015286737
  • Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–D672. doi:10.1093/nar/gkj06716381955
  • Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015;6:205. doi:10.3389/fphar.2015.0020526441661
  • Van Regenmortel MH. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 2004;5(11):1016–1020. doi:10.1038/sj.embor.740028415520799
  • Petrelli A.  Polypharmacological kinase inhibitors: new hopes for cancer therapy In: Peters J-U, editor. Polypharmacology in Drug Discovery. New Jersey: John Wiley & Sons, Inc.; 2012;149–165.
  • Azmi AS. Network pharmacology for cancer drug discovery: are we there yet? Future Med Chem. 2012;4(8):939–941. doi:10.4155/fmc.12.4422650234
  • Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1111. doi:10.1038/nbt1007-111017921993
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690. doi:10.1038/nchembio.11818936753
  • Kitano H. Biological robustness. Nat Rev Genet. 2004;5(11):826–837. doi:10.1038/nrg147115520792
  • Zhao J, Yu H, Luo JH, Cao ZW, Li YX. Hierarchical modularity of nested bow-ties in metabolic networks. BMC Bioinformatics. 2006;7:386. doi:10.1186/1471-2105-7-38616916470
  • Zhao J, Tao L, Yu H, Luo JH, Cao ZW, Li YX. Bow-tie topological features of metabolic networks and the functional significance. Beijing Chin Sci Bull. 2007;52(8):1036–1045.
  • Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–42. doi:10.1038/3507513811333967
  • Zhao J, Geng C, Tao L, et al. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data. J Proteome Res. 2010;9(4):1648–1658. doi:10.1021/pr900618820136149
  • Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007;25(10):1119–1126. doi:10.1038/nbt133817921997
  • Thieffry D, Thomas R. Dynamical behaviour of biological regulatory networks–II. Immunity control in bacteriophagelambda. Bull Math Biol. 1995;57(2):277–297. doi:10.1016/0092-8240(94)00037-D7703921
  • Somogyi R, Sniegoski CA. Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity. 1996;1(6):45–63. doi:10.1002/cplx.v1.6
  • Liu LL. Research on dynamic behavior of boolean networks [dissertation]. Zhejiang: University of Wen Zhou; 2012 Chinese.
  • Hu MX. Research on optimal bit intervention algorithm based on boolean network attraction domain [dissertation]. Zhjiang: University of Wen Zhou; 2016 Chinese.
  • Lähdesmäki H, Shmulevich I, Yli-Harja O. On learning gene regulatory networks under the boolean network model. Mach Learn. 2003;52(1–2):147–167. doi:10.1023/A:1023905711304
  • Dougherty J, Tabus I, Astola J. Inference of gene regulatory networks based on a universal minimum description length. EURASIP J Bioinform Syst Biol. 2008;(1):1–11.
  • Liu W, Lähdesmäki H, Dougherty ER, Shmulevich I. Inference of boolean networks using sensitivity regularization. EURASIP J Bioinform Syst Biol. 2008;(1):780541.18604289
  • Fang J, Ouyang H, Shen L, Dougherty ER, Liu W. Using the minimum description length principle to reduce the rate of false positives of best-fit algorithms. EURASIP J Bioinform Syst Biol. 2014;1:1–8.
  • Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 2012;4(5):41. doi:10.1186/gm34022548828
  • Ahmed J, Meinel T, Dunkel M, et al. CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge. Nucleic Acids Res. 2011;39(Database issue):D960–7. doi:10.1093/nar/gkq91020952398
  • Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med. 2018;10(4):e1417. doi:10.1002/wsbm.141729474005
  • Shah OS, Chaudhary MFA, Awan HA, et al. ATLANTIS - attractor landscape analysis toolbox for cell fate discovery and reprogramming. Sci Rep. 2018;8(1):3554. doi:10.1038/s41598-018-22031-329476134
  • Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol. 1973;39(1):103–129. doi:10.1016/0022-5193(73)90208-74741704
  • Helikar T, Kochi N, Kowal B, et al. A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PLoS One. 2013;8(4):e61757. doi:10.1371/journal.pone.006175723637902
  • Choi M, Shi J, Jung SH, Chen X, Cho KH. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci Signal. 2012;5(251):ra83. doi:10.1126/scisignal.200328923169817
  • Müssel C, Hopfensitz M, Kestler HA. BoolNet–an R package for generation, reconstruction and analysis of boolean networks. Bioinformatics. 2010;26(10):1378–1380. doi:10.1093/bioinformatics/btq12420378558
  • Longabaugh WJ, Davidson EH, Bolouri H. Computational representation of developmental genetic regulatory networks. Dev Biol. 2005;283(1):1–16. doi:10.1016/j.ydbio.2005.04.02315907831
  • Batagelij V, Mrvar A. Pajek- program for large network analysis. Connections. 1998;21(2):47–57.
  • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic boolean networks: a rule-based uncertainty model for gene-regulatory networks. Bioinformatics. 2002;18(2):261–274. doi:10.1093/bioinformatics/18.2.26111847074
  • Thomas R. Regulatory networks seen as asynchronous automata: a logical description. J Theor Biol. 1991;153(1):1–23. doi:10.1016/S0022-5193(05)80350-9
  • Sánchez L, Thieffry D. A logical analysis of the drosophila gap-gene system. J Theor Biol. 2001;211(2):115–141. doi:10.1006/jtbi.2001.233511419955
  • Sánchez L, Thieffry D. Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J Theor Biol. 2003;224(4):517–537. doi:10.1016/s0022-5193(03)00201-712957124
  • Zheng QB. Research on boolean network attractor determination algorithm [dissertation]. Zhejiang: University of Wen Zhou; 2015 Chinese.
  • Hinkelmann F, Brandon M, Guang B, et al. ADAM: analysis of discrete models of biological systems using computer algebra. BMC Bioinformatics. 2011;12:295. doi:10.1186/1471-2105-12-29521774817
  • Waddington CH. The Strategy of Genes. London: Routledge; 1957.
  • Kim Y, Choi S, Shin D, Cho KH. Quantitative evaluation and reversion analysis of the attractor landscapes of an intracellular regulatory network for colorectal cancer. BMC Syst Biol. 2017;11(1):45. doi:10.1186/s12918-017-0424-228381275
  • Tabus I, Astola J. On the use of MDL principle in gene expression prediction. EURASIP J Appl Signal Process. 2001;2001(4):297–303. doi:10.1155/S1110865701000270
  • Vahedi G, Faryabi B, Chamberland JF, Datta A, Dougherty ER. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy. IEEE Trans Biomed Eng. 2008;55(10):2319–2331. doi:10.1109/TBME.2008.92567718838357
  • Qian X, Ivanov I, Ghaffari N, Dougherty ER. Intervention in gene regulatory networks via greedy control policies based on long-run behavior. BMC Syst Biol. 2009;3:61. doi:10.1186/1752-0509-3-4319527511
  • Yousefi MR, Dougherty ER. Intervention in gene regulatory networks with maximal phenotype alteration. Bioinformatics. 2013;29(14):1758–1767. doi:10.1093/bioinformatics/btt24223630177
  • Choi M, Shi J, Zhu Y, Yang R, Cho KH. Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response. Nat Commun. 2017;8(1):1940. doi:10.1038/s41467-017-02160-529208897
  • Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Pathway-based technologies for early drug discovery. Drug Discov Today. 2018;23(3):626–635. doi:10.1016/j.drudis.2017.12.00129294361