558
Views
66
CrossRef citations to date
0
Altmetric
Original Research

A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus

, , , , ORCID Icon, , , & show all
Pages 3989-4005 | Published online: 28 Nov 2019

References

  • Adeshara KA, Diwan AG, Tupe RS. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets. 2016;17(11):1309–1328. doi:10.2174/138945011766615120912400726648059
  • Feudtner C. Diabetes: the sweet irony of modern technology. Bull World Health Organ. 2011;8(2):90–91. doi:10.2471/BLT.11.040211
  • Sarwar NGP, Seshasai SR, Gobin R, Kaptoge S, Di A. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Emerging Risk Factors Collab. 2010;365:2215–2222.
  • Sastre AA, Vernooij R, Harmand MG. Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2017;6:CD003804.28617932
  • Vuylsteke V, Chastain LM, Maggu GA, Brown C. Imeglimin: a potential new multi-target drug for type 2 diabetes. Drugs R D. 2015;15(3):227–232. doi:10.1007/s40268-015-0099-326254210
  • Ena J, Gomez-Huelgas R, Sanchez-Fuentes D, et al. Management of patients with type 2 diabetes and multiple chronic conditions: a Delphi consensus of the Spanish Society of Internal Medicine. Eur J Intern Med. 2016;27:31–36. doi:10.1016/j.ejim.2015.10.01526586286
  • Jacobs E, Hoyer A, Brinks R, Icks A, Kuß O, Rathmann W. Healthcare costs of type 2 diabetes in Germany. Diabetic Med. 2017;34(6):855–861. doi:10.1111/dme.1333628199029
  • Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes – a global systematic review. PharmacoEconomics. 2015;33(8):811–831. doi:10.1007/s40273-015-0268-925787932
  • Wenjuan X, Liangxiao Z, Yuhong H, Qianxu Y, Hongbin X, Deqin Z. Discrimination of type 2 diabetes mellitus corresponding to different traditional Chinese medicine syndromes based on plasma fatty acid profiles and chemometric methods. J Ethnopharmacol. 2012;143(2):463–468. doi:10.1016/j.jep.2012.06.04522820238
  • Wang P, Sun H, Lv H, et al. Thyroxine and reserpine-induced changes in metabolic profiles of rat urine and the therapeutic effect of Liu Wei Di Huang Wan detected by UPLC-HDMS. J Pharm Biomed Anal. 2010;53(3):631–645. doi:10.1016/j.jpba.2010.04.03220605388
  • Dai B, Wu Q, Zeng C, et al. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J Ethnopharmacol. 2016;192:382–389. doi:10.1016/j.jep.2016.07.02427401286
  • Tseng YT, Chang WH, Lin CC, Chang FR, Wu PC, Lo YC. Protective effects of Liuwei dihuang water extracts on diabetic muscle atrophy. Phytomedicine. 2019;53:96–106. doi:10.1016/j.phymed.2018.09.03230668418
  • Xu ZJ, Shu S, Li ZJ, Liu YM, Zhang RY, Zhang Y. Liuwei Dihuang pill treats diabetic nephropathy in rats by inhibiting of TGF-beta/SMADS, MAPK, and NF-kB and upregulating expression of cytoglobin in renal tissues. Medicine. 2017;96(3):e5879. doi:10.1097/MD.000000000000587928099346
  • Wang X, Sun H, Zhang A, Sun W, Wang P, Wang Z. Potential role of metabolomics approaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine. J Pharm Biomed Anal. 2011;55(5):859–868. doi:10.1016/j.jpba.2011.01.04221353755
  • Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.1016/S1875-5364(13)60037-023787177
  • Zhang G, Li Q, Chen Q. Network pharmacology: a new approach for Chinese Herbal Medicine Research. Evid Based Complement Alternat Med. 2013;2013(8):621423.23762149
  • Mao Y, Hao J, Jin ZQ, et al. Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget. 2017;8(16):27007–27021. doi:10.18632/oncotarget.1535128212580
  • Zeng L, Yang K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach. J Ethnopharmacol. 2017;199:68–85. doi:10.1016/j.jep.2017.01.04528130113
  • Zuo H, Zhang Q, Su S, Chen Q, Yang F, Hu Y. A network pharmacology-based approach to analyse potential targets of traditional herbal formulas: an example of Yu Ping Feng decoction. Sci Rep. 2018;8:1. doi:10.1038/s41598-018-29764-129311619
  • Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–1266. doi:10.1039/c5np00005j26030402
  • Lee AY, Park W, Kang TW, Cha MH, Chun JM. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J Ethnopharmacol. 2018;221:151–159. doi:10.1016/j.jep.2018.04.02729698773
  • Kang D, Pang XC, Ying Z, et al. Network pharmacology-based analysis of Chinese herbal NaoDeSheng formula for application to Alzheimer disease. Chin J Nat Med. 2018;16(1):53–62. doi:10.1016/S1875-5364(18)30029-329425590
  • Jinlong R, Peng L, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;16(1):13.
  • Huang J, Cheung F, Tan HY, et al. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol Med Rep. 2017;16(4):4583–4592. doi:10.3892/mmr.2017.714928791364
  • Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci Rep. 2016;6:21146. doi:10.1038/srep2114626879404
  • Li B, Rui J, Ding X, Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J Ethnopharmacol. 2019;233:158–168. doi:10.1016/j.jep.2018.12.03330590198
  • Breuza L, Poux S, Estreicher A, et al. The UniProtKB guide to the human proteome. Database (Oxford). 2016;2016:bav120.26896845
  • Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses: the GeneCards suite. Cur Protoc Bioinf. 54(1), 1–302016.
  • Amberger JS, Hamosh A. Searching Online Mendelian Inheritance in Man (OMIM): a knowledgebase of human genes and genetic phenotypes. Cur Protoc Bioinf. 2017;58(1):1–2.
  • Schneeweiss A, Ruckhäberle E, Huober J. Chemotherapy for metastatic breast cancer – an anachronism in the era of personalised and targeted oncological therapy? Geburtshilfe Frauenheilkd. 2015;75(6):574–583. doi:10.1055/s-0035-154615026166838
  • Minoru K. A database for post-genome analysis. Trends Genet. 1997;13 375–376.9287494
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi:10.1093/nar/gkw109227899662
  • Xu WM, Yang K, Jiang LJ, Hu JQ, Zhou XZ. Integrated modules analysis to explore the molecular mechanisms of phlegm-stasis cementation syndrome with ischemic heart disease. Front Physiol. 2018;9:7. doi:10.3389/fphys.2018.0000729403392
  • Qian B, Junyang L, Chao H, et al. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene. Toxicol Appl Pharmacol. 2015;283(2):83–91. doi:10.1016/j.taap.2015.01.00625596431
  • Guo R, Zhang X, Su J, et al. Identifying potential quality markers of Xin-Su-Ning capsules acting on arrhythmia by integrating UHPLC-LTQ-Orbitrap, ADME prediction and network target analysis. Phytomedicine. 2018;44:117–128. doi:10.1016/j.phymed.2018.01.01929526583
  • Gary D, Bader CWH. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4(2):1–27.12513700
  • Ni M, Liu X, Wu J, et al. Identification of candidate biomarkers correlated with the pathogenesis and prognosis of non-small cell lung cancer via integrated bioinformatics analysis. Front Genet. 2018;9:469. doi:10.3389/fgene.2018.0017330369945
  • Fang E, Zhang X. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis. Cancer Biomark. 2017;21(1):373–381. doi:10.3233/CBM-17055029081411
  • Vilar S, Cozza G, Moro S. Medicinal chemistry and the Molecular Operating Environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem. 2008;8(18):1555–1572. doi:10.2174/15680260878678662419075767
  • Maier JK, Labute P. Assessment of fully automated antibody homology modeling protocols in molecular operating environment. Proteins. 2014;82(8):1599–1610. doi:10.1002/prot.2457624715627
  • Andrews M, Leiva E, Arredondo-Olguín M. Short repeats in the heme oxygenase 1 gene promoter is associated with increased levels of inflammation, ferritin and higher risk of type-2 diabetes mellitus. J Trace Elem Med Biol. 2016;37:25–30. doi:10.1016/j.jtemb.2016.06.00127473828
  • Lee EY, Lee YH, Kim SH, et al. Association between heme oxygenase-1 promoter polymorphisms and the development of albuminuria in type 2 diabetes: a case-control study. Medicine. 2015;94(43):e1825. doi:10.1097/MD.000000000000087426512585
  • Lee SE, Lee YB, Jun JE, et al. Increment of serum bilirubin as an independent marker predicting new-onset type 2 diabetes mellitus in a Korean population. Nutr Metab Cardiovasc Dis. 2017;27(3):234–240. doi:10.1016/j.numecd.2016.10.00327989511
  • George S. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304(5675):1325–1328. doi:10.1126/science.109670615166380
  • Chen WS, Peng X-D, Wang Y, et al. Leptin deficiency and beta-cell dysfunction underlie type 2 diabetes in compound Akt knockout mice. Mol Cell Biol. 2009;29(11):3151. doi:10.1128/MCB.01792-0819289493
  • Yin X, Xu Z, Zhang Z, et al. Association of PI3K/AKT/mTOR pathway genetic variants with type 2 diabetes mellitus in Chinese. Diabetes Res Clin Pract. 2017;128:127–135. doi:10.1016/j.diabres.2017.04.00228477532
  • Fathy SA, Mohamed MR, Ali MAM, El-Helaly AE, Alattar AT. Influence of IL-6, IL-10, IFN-gamma and TNF-alpha genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers. 2018;24:1–13.30126309
  • Senthilkumar GP, Anithalekshmi MS, Yasir M, Parameswaran S, Packirisamy RM, Bobby Z. Role of omentin 1 and IL-6 in type 2 diabetes mellitus patients with diabetic nephropathy. Diabetes Metab Syndr. 2018;12(1):23–26. doi:10.1016/j.dsx.2017.08.00528864059
  • Kologrivova IV, Suslova TE, Koshel’Skaya OA, Vinnitskaya IV, Trubacheva OA. System of matrix metalloproteinases and cytokine secretion in type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension. Bull Exp Biol Med. 2014;156(5):635–638. doi:10.1007/s10517-014-2413-424770746
  • EH CN K, Saha PK, Xiao L, et al. miR-30a remodels subcutaneous adipose tissue inflammation to improve insulin sensitivity in obesity. Diabetes. 2018;67(12):2541–2553. doi:10.2337/db17-137830002134
  • M WN C, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;2:S97–107.
  • Yamada YMH, Watanabe S, Kato K, et al. Association of a polymorphism of CYP3A4 with type 2 diabetes mellitus. Int J Mol Med. 2007;20(5):703–707.17912464
  • Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118(11):3577–3585. doi:10.1002/jcb.2609728460155
  • Liu C, Wan X, Ye T, et al. Matrix metalloproteinase 2 contributes to pancreatic beta cell injury induced by oxidative stress. PLoS One. 2014;9(10):e110227. doi:10.1371/journal.pone.011022725333278
  • Kostov K, Blazhev A, Atanasova M, Dimitrova A. Serum concentrations of endothelin-1 and matrix metalloproteinases-2, -9 in pre-hypertensive and hypertensive patients with type 2 diabetes. Int J Mol Sci. 2016;17(8). doi:10.3390/ijms17081182
  • Ma YZ, Jiang QY, Kong DQ. Association between matrix metallopeptidase 1 and type 2 diabetes mellitus coexisting with coronary heart disease in a Han Chinese population. Genet Mol Res. 2016;15(2). doi:10.4238/gmr.15027938
  • Chasseaud LF. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res. 1979;29(29):175–274.474272
  • Antas P, Carneiro M, Reis B, et al. GST transcriptional changes induced by a toxic Microcystis aeruginosa strain in two bivalve species during exposure and recovery phases. Ecotoxicology. 2018;27(9):1272–1280. doi:10.1007/s10646-018-1980-y30242593
  • Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(1):1–16. doi:10.1042/0264-6021:360000111695986
  • Tang ST, Wang CJ, Tang HQ, Zhang Q, Wang Y. Evaluation of glutathione S-transferase genetic variants affecting type 2 diabetes susceptibility: a meta-analysis. Gene. 2013;530(2):301–308. doi:10.1016/j.gene.2013.08.04324008019
  • Babelova A, Burckhardt BC, Salinas-Riester G, Pommerenke C, Burckhardt G, Henjakovic M. Next generation sequencing of sex-specific genes in the livers of obese ZSF1 rats. Genomics. 2015;106(4):204–213. doi:10.1016/j.ygeno.2015.07.00626200819
  • Stoian A, Banescu C, Balasa RI, et al. Influence of GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus and diabetic sensorimotor peripheral neuropathy risk. Dis Markers. 2015;2015:638693. doi:10.1155/2015/10535826435566
  • Takako Yokozawa, Kim HY, Yamabe N. Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract. Am J Chin Med (Gard City N Y). 2004;32(6):829–839. doi:10.1142/S0192415X04002442
  • Xing L, Dai G, Gaohong L, et al. Synergistic interaction of effective parts in Rehmanniae Radix and Cornus officinalis ameliorates renal injury in C57BL/KsJ-db/db diabetic mice: involvement of suppression of AGEs/RAGE/SphK1 signaling pathway. J Ethnopharmacol. 2016;185:110–119. doi:10.1016/j.jep.2016.03.01726972502
  • Qian DS, Zhu YF, Zhu Q. Effect of alcohol extract of cornus officinalis Sieb. et Zucc on GLUT4 expression in skeletal muscle in type 2 (non-insulin-dependent) diabetic mellitus rats. Zhongguo Zhong Yao Za Zhi. 2001;26(12):859–862.12776340
  • Zhang M-H, Feng L, Zhu M-M, et al. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and high-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats. J Ethnopharmacol. 2014;151(1):591–600. doi:10.1016/j.jep.2013.11.01524269777
  • Li Q, Li W, Gao Q, Zou Y. Hypoglycemic effect of Chinese Yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight. J Food Sci. 2017;82(10):2487–2494. doi:10.1111/1750-3841.1391928906544
  • Hsu PC, Tsai YT, Lai JN, Wu CT, Lin SK, Huang CY. Integrating traditional Chinese medicine healthcare into diabetes care by reducing the risk of developing kidney failure among type 2 diabetic patients: a population-based case control study. J Ethnopharmacol. 2014;156:358–364. doi:10.1016/j.jep.2014.08.02925178949
  • Akash MSH, Kanwal R, Shuqing C. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–531. doi:10.1002/jcb.2440222991242
  • Akash MS, Rehman K, Liaqat A. Liaqat A tumor necrosis factor-alpha role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105–110. doi:10.1002/jcb.2617428569437
  • Chawla D, Bansal S, Banerjee BD, Madhu SV, Kalra OP, Tripathi AK. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc Res. 2014;95:1–6. doi:10.1016/j.mvr.2014.06.01024984291
  • Koulis C, Watson AM, Gray SP, Jandeleit-Dahm KA. Linking RAGE and Nox in diabetic micro- and macrovascular complications. Diabetes Metab. 2015;41(4):272–281. doi:10.1016/j.diabet.2015.01.00626323666
  • Gao X, Zhang H, Schmidt AM, Zhang C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2008;295(2):H491. doi:10.1152/ajpheart.00464.200818539754
  • Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016;2016:6809703. doi:10.1155/2016/680970327547766
  • Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses. 2008;71(5):749–751. doi:10.1016/j.mehy.2008.05.03918710793
  • Tan KCB, Chow WS, Ai VHG, Metz C, Bucala R, Lam KSL. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care. 2002;25(6):1055. doi:10.2337/diacare.25.6.105512032114
  • Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685–E694. doi:10.1152/ajpendo.2001.280.5.E68511287350
  • Csiszar AUZ. Endothelial dysfunction and vascular inflammation in type 2 diabetes interaction of AGE-RAGE and TNF-α signaling. Am J Physiol Heart Circ Physiol. 2008;295(2):H475. doi:10.1152/ajpheart.00644.200818599592
  • Xue G, Souad B, Andrea P, et al. Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation. 2007;115(2):245–254. doi:10.1161/CIRCULATIONAHA.106.65067117200442
  • Andrea P, Xue G, Souad B, et al. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res. 2006;99(1):69–77. doi:10.1161/01.RES.0000229685.37402.8016741160
  • Zheng X, Zhu S, Chang S, et al. Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. Eur J Pharmacol. 2013;720(1–3):147–157.24436987
  • Kim HS, Han MS, Chung KW, et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27(2):321–333. doi:10.1016/j.immuni.2007.06.01017707128
  • Dasu MR, Martin SJ. Toll-like receptor expression and signaling in human diabetic wounds. World J Diabetes. 2014;5(2):219–223. doi:10.4239/wjd.v5.i2.21924748934
  • Mali V, Haddox S, Hornersmith C, Matrougui K, Belmadani S. Essential role for EGFR tyrosine kinase and ER stress in myocardial infarction in type 2 diabetes. Pflugers Arch. 2018;470(3):471–480. doi:10.1007/s00424-017-2097-529288332
  • Souad B, Palen DI, Gonzalez-Villalobos RA, Boulares HA, Khalid M. Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes. 2008;57(6):1629–1637. doi:10.2337/db07-073918319304
  • Prada PO, Ropelle ER, Mourão RH, et al. EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes. 2009;58(12):2910. doi:10.2337/db08-050619696185
  • Z LY L, Overstreet JM, Chung S, et al. Inhibition of epidermal growth factor receptor activation is associated with improved diabetic nephropathy and insulin resistance in type 2 diabetes. Diabetes. 2018;67(9):1847–1857. doi:10.2337/db17-151329959129
  • Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016:9340637. doi:10.1155/2016/934063728003714
  • Zheng J, Wu J, Chen J, et al. Therapeutic effects of quercetin on early inflammation in hypertriglyceridemia-related acute pancreatitis and its mechanism. Pancreatology. 2016;16(2):200–210. doi:10.1016/j.pan.2016.01.00526873426
  • Xu XH, Zhao C, Peng Q, Xie P, Liu QH. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment. Braz J Med Biol Res. 2017;50(3):e5396. doi:10.1590/1414-431X2017607128273207
  • MB G, Rathmann W, Charbonnel B, et al. Treatment of type 2 diabetes mellitus worldwide: baseline patient characteristics in the global DISCOVER study. Diabetes Res Clin Pract. 2019;151:20–32. doi:10.1016/j.diabres.2019.03.02430904743
  • Health AGDo, Ageing. What is diabetes? Australian Government Department of Health & Ageing. 2006;1:1-2. Available from: http://www.health.gov.au/internet/main/publishing.nsf/Content/pq.