273
Views
22
CrossRef citations to date
0
Altmetric
Review

Hydrogels For Peptide Hormones Delivery: Therapeutic And Tissue Engineering Applications

ORCID Icon, ORCID Icon, , , ORCID Icon, & show all
Pages 3405-3418 | Published online: 26 Sep 2019

References

  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–2707. doi:10.1016/j.bmc.2017.06.05228720325
  • Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4(4):298. doi:10.1038/nrd187615803194
  • Verma M, Furin J, Langer R, Traverso G. Making the case: developing innovative adherence solutions for the treatment of tuberculosis. BMJ Global Health. 2019;4(1):e001323. doi:10.1136/bmjgh-2018-001323
  • Park K. Controlled drug delivery systems: past forward and future back. J Controlled Release. 2014;190:3–8. doi:10.1016/j.jconrel.2014.03.054
  • Deb PK, Al-Attraqchi O, Chandrasekaran B, Paradkar A, Tekade RK. Protein/peptide drug delivery systems: practical considerations in pharmaceutical product development In: Basic Fundamentals of Drug Delivery. Elsevier; 2019:651–684.
  • Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269. doi:10.4103/0250-474X.4296720046732
  • El-Sherbiny I, Khalil I, Ali I, Yacoub M. Updates on smart polymeric carrier systems for protein delivery. Drug Dev Ind Pharm. 2017;43(10):1567–1583. doi:10.1080/03639045.2017.133872328581834
  • Ghasemi R, Abdollahi M, Zadeh EE, et al. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci Rep. 2018;8(1):9854. doi:10.1038/s41598-018-28092-829959339
  • Nikolić LB, Zdravković AS, Nikolić VD, Ilić-Stojanović SS. Synthetic hydrogels and their impact on health and environment In: Cellulose-Based Superabsorbent Hydrogels. Berlin: Springer; 2018:1–29.
  • Park YS, Lee Y, Jin YM, et al. Sustained release of parathyroid hormone via in situ cross‐linking gelatin hydrogels improves the therapeutic potential of tonsil‐derived mesenchymal stem cells for hypoparathyroidism. J Tissue Eng Regen Med. 2018;12(3):e1747–e1756. doi:10.1002/term.243028244684
  • Bandopadhyay S, Bandyopadhyay N, Deb PK, Singh C, Tekade RK. Preformulation studies of drug substances, protein, and peptides: role in drug discovery and pharmaceutical product development In: Dosage Form Design Considerations. Elsevier; 2018:401–433.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121. doi:10.1016/j.jare.2013.07.00625750745
  • Mohammadinejad R, Maleki H, Larrañeta E, et al. Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today. 2019;16:213–246. doi:10.1016/j.apmt.2019.04.010
  • Du G, Peng Y, Pei Y, Zhao L, Wen Z, Hu Z. Thermo-responsive temporary plugging agent based on multiple phase transition supramolecular gel. Energy Fuels. 2017;31(9):9283–9289. doi:10.1021/acs.energyfuels.7b01691
  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015;57:414–433. doi:10.1016/j.msec.2015.07.053
  • Tomar N, Tomar M, Gulati N, Nagaich U. pHEMA hydrogels: devices for ocular drug delivery. Int J Res Health Allied Sci. 2012;1(4):224. doi:10.4103/2278-344X.107844
  • Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.10840191
  • Norman AW, Litwack G. Hormones. Academic Press; 1997.
  • Khpal M, Singer M. Inflammation, Hormones, and Metabolism In: Inflammation: From Molecular and Cellular Mechanisms to the Clinic. New York: John Wiley & Sons, Inc; 2017:915–946.
  • Law S, Huang K, Chou V. Stability of desmopressin loaded in liposomes. J Liposome Res. 2003;13(3–4):269–277. doi:10.1081/LPR-12002639214670232
  • Gavrila A, Hollenberg AN. The hypothalamic-pituitary-thyroid axis: physiological regulation and clinical implications In: The Thyroid and Its Diseases. Springer; 2019:13–23.
  • Parsons JA. Peptide Hormones. University Park Press; 1976.
  • Avanti C. Innovative Strategies for Stabilization of Therapeutic Peptides in Aqueous Formulations. 2012.
  • Varamini P, Toth I. Recent advances in oral delivery of peptide hormones. Expert Opin Drug Deliv. 2016;13(4):507–522. doi:10.1517/17425247.2016.114252626787260
  • Schulingkamp R, Pagano T, Hung D, Raffa R. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–872.11118610
  • Pawar VK, Meher JG, Singh Y, Chaurasia M, Reddy BS, Chourasia MK. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J Controlled Release. 2014;196:168–183. doi:10.1016/j.jconrel.2014.09.031
  • Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014;243:572–590. doi:10.1016/j.cej.2014.01.065
  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–575. doi:10.1007/s11095-009-0045-620143256
  • Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413–428. doi:10.1016/j.jsps.2014.06.00427330372
  • Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–1467. doi:10.4155/tde.13.10424228993
  • Tan ML, Choong PF, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31(1):184–193. doi:10.1016/j.peptides.2009.10.00219819278
  • Cholewinski M, Lückel B, Horn H. Degradation pathways, analytical characterization and formulation strategies of a peptide and a protein calcitonine and human growth hormone in comparison. Pharm Acta Helv. 1996;71(6):405–419.8997176
  • Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Controlled Release. 2013;165(2):129–138. doi:10.1016/j.jconrel.2012.11.005
  • Zelikin AN, Ehrhardt C, Healy AM. Materials and methods for delivery of biological drugs. Nat Chem. 2016;8(11):997. doi:10.1038/nchem.262927768097
  • Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8(10):3054–3060. doi:10.1021/bm070392317877397
  • Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol. 2011;2(05):510. doi:10.4236/jbnb.2011.225062
  • Niu Z, Conejos-Sanchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Del Rev. 2016;106:337–354. doi:10.1016/j.addr.2016.04.001
  • Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Controlled Release. 2000;65(1–2):261–269. doi:10.1016/S0168-3659(99)00247-3
  • Khafagy E-S, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Del Rev. 2007;59(15):1521–1546. doi:10.1016/j.addr.2007.08.019
  • Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–188.10460913
  • Savale SK. Protein and peptide drug delivery system. World J Pharm Pharm Sci. 2016;5(4):1–19.
  • Clement S, Still JG, Kosutic G, McAllister R. Oral insulin product hexyl-insulin monoconjugate 2 (HIM2) in type 1 diabetes mellitus: the glucose stabilization effects of HIM2. Diabetes Technol Ther. 2002;4(4):459–466. doi:10.1089/15209150276030654412396740
  • Ismail R, Csoka I. Novel strategies in the oral delivery of antidiabetic peptide drugs – insulin, GLP 1 and its analogs. Eur J Pharm Biopharm. 2017;115:257–267. doi:10.1016/j.ejpb.2017.03.01528336368
  • Hirakura T, Yasugi K, Nemoto T, et al. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J Control Release. 2010;142(3):483–489. doi:10.1016/j.jconrel.2009.11.02319951730
  • Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Controlled Release. 2012;161(2):461–472. doi:10.1016/j.jconrel.2011.10.037
  • Batrakovaa EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Controlled Release. 2008;130(2):98–106. doi:10.1016/j.jconrel.2008.04.013
  • Suthiwangcharoen N, Nagarajan R. Nanoarmoring of proteins by conjugation to block copolymer micelles. Methods Enzymol. 2017;590(Elsevier):277–304. doi:10.1016/bs.mie.2017.01.01328411641
  • Labonté V, Marion A, Virgilio N, Tavares JR. Gas-phase surface engineering of polystyrene beads used to challenge automated particle inspection systems. Ind Eng Chem Res. 2016;55(27):7362–7372. doi:10.1021/acs.iecr.6b01573
  • Swaminathan J. C. E. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9(12):1489–1503. doi:10.1517/17425247.2012.73565823092138
  • Li X, Kuromi H, Briggs L, et al. Bicaudal-D binds clathrin heavy chain to promote its transport and augments synaptic vesicle recycling. Embo J. 2010;29(5):992–1006. doi:10.1038/emboj.2009.41020111007
  • Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv. 2016;23(7):2497–2512. doi:10.3109/10717544.2015.101965325777339
  • Mohanraj VJ, Barnes TJ, Prestidge CA. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins. Int J Pharm. 2010;392(1–2):285–293. doi:10.1016/j.ijpharm.2010.03.06120363300
  • Dombu CY, Betbeder D. Airway delivery of peptides and proteins using nanoparticles. Biomaterials. 2013;34(2):516–525. doi:10.1016/j.biomaterials.2012.08.07023046753
  • Fröhlich E. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Int J Nanomedicine. 2015;10:3761–3778. doi:10.2147/IJN.S8306826060398
  • Amancha PK, Balkundi S, Lvov Y, et al. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly. Int J Pharm. 2014;466(1–2):96–108. doi:10.1016/j.ijpharm.2014.02.00624566038
  • Andrade A, Rossi RC, Stival VP, et al. Different supplements for finishing of Nellore cattle on deferred Brachiaria decumbens pasture during the dry season. Bol Ind Anim. 2015;72(2):91–101. doi:10.17523/bia.v72n2p91
  • Jafari G, Wasko BM, Tonge A, et al. Tether mutations that restore function and suppress pleiotropic phenotypes of the C. elegans isp-1(qm150) Rieske iron–sulfur protein. Pnas. 2015;112(45):E6148–E6157. doi:10.1073/pnas.150941611226504246
  • Teleanu DM, Negut I, Grumezescu V, Grumezescu AM, Teleanu RI. Nanomaterials for drug delivery to the central nervous system. Nanomaterials. 2019;9(3):371. doi:10.3390/nano9071000
  • Pawar R, Ben-Ari A, Domb AJ. Protein and peptide parenteral controlled delivery. Expert Opin Biol Ther. 2004;4(8):1203–1212. doi:10.1517/14712598.4.8.120315268656
  • Hutchinson J, Burholt S, Hamley I. Peptide hormones and lipopeptides: from self‐assembly to therapeutic applications. J Pept Sci. 2017;23(2):82–94. doi:10.1002/psc.295428127868
  • Parhi R. Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull. 2017;7(4):515–530. doi:10.15171/apb.2017.06429399542
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23. doi:10.1016/j.addr.2012.09.010
  • Phan VG, Thambi T, Duong HTT, Lee DS. Poly (amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Sci Rep. 2016;6:29978. doi:10.1038/srep2997827436576
  • Schoener CA, Hutson HN, Peppas NA. pH‐responsive hydrogels with dispersed hydrophobic nanoparticles for the delivery of hydrophobic therapeutic agents. Polym Int. 2012;61(6):874–879. doi:10.1002/pi.421923087546
  • Batista RA, Otoni CG, Espitia PJ. Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques In: Materials for Biomedical Engineering. Elsevier; 2019:61–81.
  • Los E, Rosenfeld RG Growth and growth hormone in turner syndrome: looking back, looking ahead. Paper presented at: American Journal of Medical Genetics Part C: Seminars in Medical Genetics; 2019.
  • Dao LN, Lippe B, Laird M, Beierle I. Human growth hormone In: Pharmaceutical Biotechnology. Springer; 2019:437–449.
  • Amato G, Mazziotti G, Di Somma C, et al. Recombinant growth hormone (GH) therapy in GH-deficient adults: a long-term controlled study on daily versus thrice weekly injections. J Clin Endocrinol Metab. 2000;85(10):3720–3725. doi:10.1210/jcem.85.10.688111061530
  • Cai Y, Xu M, Yuan M, Liu Z, Yuan W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine. 2014;9:3527.25114523
  • Webster R, Xie R, Didier E, et al. PEGylation of somatropin (recombinant human growth hormone): impact on its clearance in humans. Xenobiotica. 2008;38(10):1340–1351. doi:10.1080/0049825080241385618802875
  • Goto T, Morishita M, Kavimandan NJ, Takayama K, Peppas NA. Gastrointestinal transit and mucoadhesive characteristics of complexation hydrogels in rats. J Pharm Sci. 2006;95(2):462–469. doi:10.1002/jps.2056616381013
  • López JE, Peppas NA. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P (MAA‐g‐EG) Microparticles. Drug Dev Ind Pharm. 2004;30(5):497–504. doi:10.1081/DDC-12003748015244085
  • Atayde EC Jr, Montalbo RCK, Arco SD. Temperature-and pH-dependent drug release of block copolymers of methacrylic acid and poly (ethylene glycol) methyl ether methacrylates. Philipp J Sci. 2018;147(3):363–372.
  • Atayde EC Jr, Montalbo RCK, Arco SD Linear and hyperbranched copolymers of PEG-based acrylates and methacrylic acid as ph-responsive hydrophobic drug carriers. Paper presented at: Materials Science Forum; 2018.
  • Carr DA, Peppas NA. Assessment of poly (methacrylic acid‐co‐N‐vinyl pyrrolidone) as a carrier for the oral delivery of therapeutic proteins using Caco‐2 and HT29‐MTX cell lines. J Biomed Mater Res Part A. 2010;92(2):504–512.
  • Cascone MG, Di Silvio L, Sim B, Downes S. Collagen and hyaluronic acid based polymeric blends as drug delivery systems for the release of physiological concentrations of growth hormone. Jmsmm. 1994;5(9–10):770–774.
  • Veldhuis JD. A tripeptidyl ensemble perspective of interactive control of growth hormone secretion. Horm Res Paediatr. 2003;60(Suppl. 1):86–101. doi:10.1159/000071232
  • Okumu FW, Dao LN, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABERTM. Biomaterials. 2002;23(22):4353–4358. doi:10.1016/s0142-9612(02)00174-612219825
  • Tae G, Lammertink RG, Kornfield JA, Hubbell JA. Facile hydrophilic surface modification of poly (tetrafluoroethylene) using fluoroalkyl‐terminated poly (ethylene glycol)s. Adv Mater. 2003;15(1):66–69. doi:10.1002/(ISSN)1521-4095
  • Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4315–4323. doi:10.1016/s0142-9612(02)00176-x12219821
  • Nir Y, Paz A, Sabo E, Potasman I. Fear of injections in young adults: prevalence and associations. Am J Trop Med Hyg. 2003;68(3):341–344.12685642
  • Liu L, Yang H, Lou Y, et al. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int J Pharm. 2019;557:170–177. doi:10.1016/j.ijpharm.2018.12.05330597264
  • Li N, Li X-R, Zhou Y-X, et al. The use of polyion complex micelles to enhance the oral delivery of salmon calcitonin and transport mechanism across the intestinal epithelial barrier. Biomaterials. 2012;33(34):8881–8892. doi:10.1016/j.biomaterials.2012.08.04722975427
  • Torres-Lugo M, Peppas NA. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules. 1999;32(20):6646–6651. doi:10.1021/ma990541c
  • Donini C, Robinson D, Colombo P, Giordano F, Peppas N. Preparation of poly (methacrylic acid-g-poly (ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int J Pharm. 2002;245(1–2):83–91.12270245
  • Kamei N, Morishita M, Chiba H, Kavimandan NJ, Peppas NA, Takayama K. Complexation hydrogels for intestinal delivery of interferon β and calcitonin. J Controlled Release. 2009;134(2):98–102. doi:10.1016/j.jconrel.2008.11.014
  • Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003;20(11):886–898. doi:10.1046/j.1464-5491.2003.01076.x14632713
  • Bahman F, Greish K, Taurin S. Nanotechnology in insulin delivery for management of diabetes. Pharmaceutical Nanotechnology. 2019;7:113–128. doi:10.2174/221173850766619032111072130907328
  • Gordon Still J. Development of oral insulin: progress and current status. Diabetes Metab Res Rev. 2002;18:S1. doi:10.1002/dmrr.207
  • Li J, Wang Y, Han L, Sun X, Yu H, Yu Y. Time–action profile of an oral enteric insulin formulation in healthy Chinese volunteers. Clin Ther. 2012;34(12):2333–2338. doi:10.1016/j.clinthera.2012.11.00423195963
  • Morales-Burgos AM, Carvajal-Millan E, Sotelo-Cruz N, et al. Polysaccharides in alternative methods for insulin delivery In Biopolymer Grafting. Elsevier; 2018:175–197.
  • Morishita M, Lowman AM, Takayama K, Nagai T, Peppas NA. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Controlled Release. 2002;81(1):25–32. doi:10.1016/S0168-3659(02)00019-6
  • Morishita M, Goto T, Peppas NA, et al. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Controlled Release. 2004;97(1):115–124. doi:10.1016/j.jconrel.2004.03.008
  • Foss AC, Peppas NA. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures. Eur J Pharm Biopharm. 2004;57(3):447–455. doi:10.1016/j.ejpb.2004.02.00815093592
  • Fukuoka Y, Khafagy E-S, Goto T, et al. Combination strategy with complexation hydrogels and cell-penetrating peptides for oral delivery of insulin. Biol Pharm Bull. 2018;41(5):811–814. doi:10.1248/bpb.b17-0095129709919
  • Sonaje K, Chen Y-J, Chen H-L, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly (γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–3394. doi:10.1016/j.biomaterials.2010.01.04220149435
  • Dorkoosh F, Verhoef JC, Borchard G, Rafiee-Tehrani M, Verheijden J, Junginger H. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm. 2002;247(1):47–55.12429484
  • Nguyen MK, Lee DS. Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly (β-amino ester). Macromolecular Research. 2010;18(2):192–199. doi:10.1007/s13233-009-0182-0
  • Rasool N, Yasin T, Heng JY, Akhter Z. Synthesis and characterization of novel pH-, ionic strength and temperature-sensitive hydrogel for insulin delivery. Poly. 2010;51(8):1687–1693. doi:10.1016/j.polymer.2010.02.013
  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev. 2012;112(5):2853–2888. doi:10.1021/cr200157d22360637
  • James HP, John R, Alex A, Anoop K. Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharm Sin B. 2014;4(2):120–127. doi:10.1016/j.apsb.2014.02.00526579373
  • Patel A, Patel M, Yang X, K Mitra A. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102–1120.25106908
  • Rastogi R, Anand S, Koul V. Evaluation of pharmacological efficacy of ‘insulin–surfoplex’ encapsulated polymer vesicles. Int J Pharm. 2009;373(1):107–115. doi:10.1016/j.ijpharm.2009.01.02219429295
  • Elvassore N, Bertucco A, Caliceti P. Production of insulin‐loaded poly (ethylene glycol)/poly (l‐lactide)(PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci. 2001;90(10):1628–1636. doi:10.1002/jps.111311745721
  • Reis CP, Veiga FJ, Ribeiro AJ, Neufeld RJ, Damgé C. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci. 2008;97(12):5290–5305. doi:10.1002/jps.2134718384153
  • Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules. 2008;10(2):243–249. doi:10.1021/bm800975j
  • Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Controlled Release. 2012;157(3):383–390. doi:10.1016/j.jconrel.2011.08.008
  • Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Del Rev. 2012;64(9):866–884. doi:10.1016/j.addr.2012.01.020
  • Uchida T, Toida Y, Sakakibara S, et al. Preparation and characterization of insulin-loaded acrylic hydrogels containing absorption enhancers. Chem Pharm Bull (Tokyo). 2001;49(10):1261–1266. doi:10.1248/cpb.49.126111605651
  • Eng J, Kleinman W, Singh L, Singh G, Raufman J-P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267(11):7402–7405.1313797
  • Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept. 2004;117(2):77–88. doi:10.1016/j.regpep.2003.10.02814700743
  • Ionut V, Zheng D, Stefanovski D, Bergman RN. Exenatide can reduce glucose independent of islet hormones or gastric emptying. Am J Physiol Endocrinol Metab. 2008;295(2):E269–E277. doi:10.1152/ajpendo.90222.200818492781
  • DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P. Encapsulation of exenatide in poly-(D, L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther. 2011;13(11):1145–1154. doi:10.1089/dia.2011.005021751887
  • Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B. Thermogelling poly (caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules. 2005;38(12):5260–5265. doi:10.1021/ma050489m
  • Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials. 2011;32(21):4725–4736. doi:10.1016/j.biomaterials.2011.03.04621482434
  • Li K, Yu L, Liu X, Chen C, Chen Q, Ding J. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials. 2013;34(11):2834–2842. doi:10.1016/j.biomaterials.2013.01.01323352120
  • Seo B-B, Park M-R, Chun C, Lee J-Y, Song S-C. The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly (organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials. 2011;32(32):8271–8280. doi:10.1016/j.biomaterials.2011.07.03321839508
  • Seo B-B, Park M-R, Song S-C. Sustained release of exendin 4 using injectable and ionic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus. ACS Appl Mater Interfaces. 2019;11(17):15201–15211. doi:10.1021/acsami.8b1966930945843
  • Chen Y, Luan J, Shen W, Lei K, Yu L, Ding J. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces. 2016;8(45):30703–30713. doi:10.1021/acsami.6b0941527786459
  • Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530–544. doi:10.1016/j.biotechadv.2017.05.00628558979
  • Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules. 2016;17(11):3441–3463. doi:10.1021/acs.biomac.6b0123527775329
  • Sood N, Bhardwaj A, Mehta S, Mehta A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2016;23(3):748–770. doi:10.3109/10717544.2014.940091
  • Naot D, Musson DS, Cornish J. The activity of peptides of the calcitonin family in bone. Physiol Rev. 2018;99(1):781–805. doi:10.1152/physrev.00066.2017
  • Liu Y, Chen X, Li S, et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy. ACS Appl Mater Interfaces. 2017;9(28):23428–23440. doi:10.1021/acsami.7b0574028640588
  • Pettway GJ, Meganck JA, Koh AJ, Keller ET, Goldstein SA, McCauley LK. Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone. 2008;42(4):806–818. doi:10.1016/j.bone.2007.11.01718234576
  • Rowshan HH, Parham MA, Baur DA, et al. Effect of intermittent systemic administration of recombinant parathyroid hormone (1-34) on mandibular fracture healing in rats. JOMS. 2010;68(2):260–267.
  • Wang X, Wang Y, Dai X, et al. Effects of intermittent administration of parathyroid hormone (1-34) on bone differentiation in stromal precursor antigen-1 positive human periodontal ligament stem cells In: Stem Cells International. 2016:2016.
  • Ardura JA, Portal‐Núñez S, Lozano D, et al. Local delivery of parathyroid hormone‐related protein‐derived peptides coated onto a hydroxyapatite‐based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res Part A. 2016;104(8):2060–2070. doi:10.1002/jbm.a.35742