169
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Synthesis of Novel Xanthone Analogues and Their Growth Inhibitory Activity Against Human Lung Cancer A549 Cells

, , ORCID Icon, , , , , , & show all
Pages 4239-4246 | Published online: 13 Dec 2019

References

  • Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–594.
  • Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M. Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release. 2013;172(1):86–95. doi:10.1016/j.jconrel.2013.06.03623838154
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi:10.3322/caac.2133226742998
  • Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2018;68(4):297–316. doi:10.3322/caac.2144629846940
  • Kumar CP, Reddy TS, Mainkar PS, et al. Synthesis and biological evaluation of 5, 10-dihydro-11H-dibenzo [b, e][1, 4] diazepin-11-one structural derivatives as anti-cancer and apoptosis inducing agents. Eur J Med Chem. 2016;108:674–686. doi:10.1016/j.ejmech.2015.12.00726735909
  • Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev. 2016;2016.
  • El-Seedi HR, El-Barbary MA, El-Ghorab DM, et al. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem. 2010;17(9):854–901. doi:10.2174/09298671079071214720156171
  • Tarushi A, Raptopoulou CP, Psycharis V, et al. Copper (II) Inverse‐[9‐Metallacrown‐3] compounds accommodating nitrato or diclofenac ligands: structure, magnetism, and biological activity. Eur J Inorg Chem. 2016;2016(2):219–231. doi:10.1002/ejic.201500769
  • Na Y. Recent cancer drug development with xanthone structures. J Pharm Pharmacol. 2009;61(6):707–712. doi:10.1211/jpp.61.06.000219505360
  • Tarushi A, Psomas G, Raptopoulou CP, Kessissoglou DP. Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties. J Inorg Biochem. 2009;103(6):898–905. doi:10.1016/j.jinorgbio.2009.03.00719395041
  • Wijeratne EM, Turbyville TJ, Fritz A, Whitesell L, Gunatilaka AA. A new dihydroxanthenone from a plant-associated strain of the fungus Chaetomium globosum demonstrates anticancer activity. Bioorg Med Chem. 2006;14(23):7917–7923. doi:10.1016/j.bmc.2006.07.04816904330
  • Murata R, Horsman MR. Tumour-specific enhancement of thermoradiotherapy at mild temperatures by the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid. Int J Hyperther. 2004;20(4):393–404. doi:10.1080/02656730310001619370
  • Shagufta AI. Recent insight into the biological activities of synthetic xanthone derivatives. Eur J Med Chem. 2016;116:267–280.27111599
  • Castanheiro RA, Pinto MM, Silva AM, et al. Dihydroxyxanthones prenylated derivatives: synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem. 2007;15(18):6080–6088. doi:10.1016/j.bmc.2007.06.03717614292
  • Wang X, Lu N, Yang Q, et al. Studies on chemical modification and biology of a natural product, gambogic acid (III): determination of the essential pharmacophore for biological activity. Eur J Med Chem. 2011;46(4):1280–1290. doi:10.1016/j.ejmech.2011.01.05121334116
  • Zhang X, Li X, Sun H, et al. Garcinia xanthones as orally active antitumor agents. J Med Chem. 2013;56(1):276–292. doi:10.1021/jm301593r23167526
  • Dai M, Yuan X, Kang J, et al. Synthesis and biological evaluation of phenyl substituted polyoxygenated xanthone derivatives as anti-hepatoma agents. Eur J Med Chem. 2013;69:159–166. doi:10.1016/j.ejmech.2013.08.02024013415
  • Yan SJ, Liu YJ, Chen YL, Liu L, Lin J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg Med Chem Lett. 2010;20(17):5225–5228. doi:10.1016/j.bmcl.2010.06.14120655212
  • Wang XL, Wan K, Zhou CH. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem. 2010;45(10):4631–4639. doi:10.1016/j.ejmech.2010.07.03120708826
  • Singh P, Sharma P, Anand A, et al. Azide-alkyne cycloaddition en route to novel 1H-1,2,3-triazole tethered isatin conjugates with in vitro cytotoxic evaluation. Eur J Med Chem. 2012;55:455–461. doi:10.1016/j.ejmech.2012.06.05722818042
  • He R, Chen Y, Chen Y, et al. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem. 2010;53(3):1347–1356. doi:10.1021/jm901667k20055418
  • Kamal A, Prabhakar S, Janaki Ramaiah M, et al. Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem. 2011;46(9):3820–3831. doi:10.1016/j.ejmech.2011.05.05021676506
  • Thomas KD, Adhikari AV, Chowdhury IH, Sumesh E, Pal NK. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur J Med Chem. 2011;46(6):2503–2512. doi:10.1016/j.ejmech.2011.03.03921489660
  • Wu J, Ni T, Chai X, et al. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur J Med Chem. 2018;143:1840–1846.29133044
  • Kamal A, Shankaraiah N, Devaiah V, et al. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg Med Chem Lett. 2008;18(4):1468–1473. doi:10.1016/j.bmcl.2007.12.06318207392
  • Isobe H, Fujino T, Yamazaki N, Guillot-Nieckowski M, Nakamura E. Triazole-linked analogue of deoxyribonucleic acid ((TL)DNA): design, synthesis, and double-strand formation with natural DNA. Org Lett. 2008;10(17):3729–3732. doi:10.1021/ol801230k18656947
  • Lee LV, Mitchell ML, Huang SJ, Fokin VV, Sharpless KB, Wong CH. A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. J Am Chem Soc. 2003;125(32):9588–9589. doi:10.1021/ja030283612904015
  • Qiu H-Y, Wang P-F, Li Z, et al. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol Res. 2016;104:86–96. doi:10.1016/j.phrs.2015.12.02526723906
  • Zhu Q, Zhang Y, Liu Y, et al. MLIF alleviates SH-SY5Y neuroblastoma injury induced by oxygen-glucose deprivation by targeting eukaryotic translation elongation factor 1A2. PLoS ONE. 2016;11(2):e0149965. doi:10.1371/journal.pone.014996526918757
  • Lauria A, Tutone M, Ippolito M, Pantano L, Almerico AM. Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by small molecules. Curr Med Chem. 2010;17(28):3142–3154. doi:10.2174/09298671079223202120666726
  • Liu J, Zhang J, Wang H, et al. Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them. Eur J Med Chem. 2017;133:50–61. doi:10.1016/j.ejmech.2017.03.06828376372