150
Views
22
CrossRef citations to date
0
Altmetric
Original Research

KLF6 Induces Apoptosis in Human Lens Epithelial Cells Through the ATF4-ATF3-CHOP Axis

, , , , , , & ORCID Icon show all
Pages 1041-1055 | Published online: 09 Mar 2020

References

  • ZhengXY, XuJ, ChenXI, LiW, WangTY. Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells. Exp Ther Med. 2015;10:1883–1887. doi:10.3892/etm.2015.272526640566
  • IkunoY. Overview of the complications of high myopia. Retina. 2017;37:2347–2351. doi:10.1097/IAE.000000000000148928590964
  • PanCW, BoeyPY, ChengC-Y, et al. Myopia, axial length, and age-related cataract: the Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2013;54:4498. doi:10.1167/iovs.13-1227123737473
  • PanCW, CheungCY, AungT, et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian Eye Study. Ophthalmology. 2013;120(2):284–291.23084122
  • PanCW, ChengCY, SawS-M, WangJJ, WongTY. Myopia and age-related cataract: a systematic review and meta-analysis. Am J Ophthalmol. 2013;156:1021–1033.e1. doi:10.1016/j.ajo.2013.06.00523938120
  • MehdizadehM, AshrafH. Prevalence of cataract type in relation to axial length in subjects with high myopia and emmetropia in an Indian population. Am J Ophthalmol. 2008;146:329–330. doi:10.1016/j.ajo.2008.04.004
  • YuZ, LijieD, HongZ, FangT. Pilot study on suppression of Krüppel-like factor 6 for proliferation of human lens epithelial cells. Chin J Exp Ophthalmol. 2014;32(4):325–330.
  • DongL, NianH, ShaoY, et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy. Cell Tissue Res. 2015;360:233–243. doi:10.1007/s00441-014-2104-525638408
  • SuY, WangF, ZhouD, et al. Inhibition of proliferation of rat lens epithelial cell by overexpession ofKLF6. Mol Vis. 2011;17:1080–1084.21552502
  • TianF, ZhaoJ, HuangL, et al. Effects of Kriippel·like factor 6 overexpression towards apoptosis of human lens epithelial cells with ultraviolet radiation B treatment. Chin J Exp Ophthalmol. 2019;37:257–262.
  • TianF, ZhaoJ, TengH, et al. Regulation of Krüppel-like factor 6 via activating transcription factor 4 pathway to apoptosis of human lens epithelial cells. Chin J Exp Ophthalmol. 2018;36:181–186.
  • AndreoliV, GehrauRC, BoccoJL. Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life. 2010;62:896–905. doi:10.1002/iub.v62.1221154818
  • GuiT, WangY, ZhangL, WangW, ZhuH, DingW. Kruppel-like factor 6 rendered rat Schwann cell more sensitive to apoptosis via upregulating FAS expression. PLoS One. 2013;8:e82449. doi:10.1371/journal.pone.008244924324791
  • LiZ, ZhouA, TangC. Molecular mechanism on endoplasmic reticulum stress responses. Chin J Biochem Mol Biol. 2004;20:283–288.
  • FatmaN, SinghP, ChhunchhaB, et al. Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis. Am J Physiol Cell Physiol. 2011;301:C954. doi:10.1152/ajpcell.00061.201121677259
  • PalsamyP, BidaseeKR, ShinoharaT. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp Eye Res. 2014;121:26–34. doi:10.1016/j.exer.2014.01.02124525405
  • QingG, LiB, VuA, et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell. 2012;22:631–644. doi:10.1016/j.ccr.2012.09.02123153536
  • IkesugiK, YamamotoR, MulhernML, ShinoharaT. Role of the unfolded protein response (UPR) in cataract formation. Exp Eye Res. 2006;83:508–516. doi:10.1016/j.exer.2006.01.03316643900
  • YangJ, ZhouS, GuJ, GuoM, XiaH, LiuY. UPR activation and the down–regulation of α-crystallin in human high myopia-related cataract lens epithelium. PLoS One. 2015;10:e0137582. doi:10.1371/journal.pone.013758226351848
  • LiY, GuoY, TangJ, JiangJ, ChenZ. New insights into the roles of CHOP-induced apoptosis in ER stress. http://Acta Biochim Biophys Sin (Shanghai). 2014;46(8):629–640.
  • LiuZ, ShiQ, SongX, et al. ATF4-ATF3-CHOP cascade activation play an important role in ER stress-induced sensitization of tetrachlorobenzoquinone-challenged PC12 cells to ROS-mediated apoptosis through DR5 signaling. Chem Res Toxicol. 2016;29:1510–1518. doi:10.1021/acs.chemrestox.6b0018127484784
  • AtsushiS, KimikoO, ShinichiK, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286:4809–4818. doi:10.1074/jbc.M110.15290021135100
  • LiuG, SuL, HaoX, et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med. 2012;16:1618–1628. doi:10.1111/j.1582-4934.2011.01401.x21801305
  • JooJH, EiichiroU, BortnerCD, Xiao-PingY, GraceL, AMJ. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem Pharmacol. 2015;97:256–268. doi:10.1016/j.bcp.2015.08.08626275811
  • SahaS, BhattacharjeeP, MukherjeeS, et al. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells. Oncol Rep. 2014;31:1589. doi:10.3892/or.2014.299324482097
  • KongL, WangS, WuX, ZuoF, QinH, WuJ. Paeoniflorin attenuates ultraviolet B-induced apoptosis in human keratinocytes by inhibiting the ROS-p38-p53 pathway. Mol Med Rep. 2016;13:3553. doi:10.3892/mmr.2016.495326936104
  • LiuC, DijanaV, KochevarIE, JurkunasUV. UV-A irradiation activates Nrf2-regulated antioxidant defense and induces p53/Caspase3-dependent apoptosis in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57:2319–2327. doi:10.1167/iovs.16-1909727127932
  • LiWB, MaMW, DongL-J, WangF, ChenL-X, LiX-R. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther. 2011;12:477–483. doi:10.4161/cbt.12.6.1630021743299
  • ShaoY, ChenJ, FreemanW, et al. Canonical Wnt Signaling Promotes Neovascularization Through Determination of Endothelial Progenitor Cell Fate via Metabolic Profile Regulation. Stem cells. 2019;37(10):1331–1343. doi:10.1002/stem.304931233254
  • TengH, HuangLY, TianF, DongLJ, ZhangH. [Effects of SMP-30 overexpression on apoptosis of human lens epithelial cells induced by ultraviolet B irradiation]. Zhonghua Yan Ke Za Zhi. 2017;11(53):835–841. doi:10.3760/cma.j.issn.0412-4081.2017.11.007
  • XingX, HuangL, LvY, et al. DL-3-n-butylphthalide protected retinal muller cells dysfunction from oxidative stress. Curr Eye Res. 2019;44:1112–1120. doi:10.1080/02713683.2019.162477731188648
  • LiuX, DongL, ZhangX, et al. Identification of p100 target promoters by chromatin immunoprecipitation-guided ligation and selection (ChIP-GLAS). Cell Mol Immunol. 2011;8(1):88–91. doi:10.1038/cmi.2010.4720921938
  • LiW, DongL, MaM, et al. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration. Drug Des Devel Ther. 2016;10:3415–3423.
  • DongL, ZhangX, FuX, et al. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated Ig epsilon gene transcription by recruitment of HDAC1. J Biol Chem. 2011;286(5):3451–3459.21106524
  • ShaoY, DongLJ, TakahashiY, et al. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab. 2019;316:E443–E452. doi:10.1152/ajpendo.00360.201830576241
  • DongL, ChenX, ShaoH, BaiL, LiX, ZhangX. Mesenchymal Stem Cells Inhibited Dendritic Cells Via the Regulation of STAT1 and STAT6 Phosphorylation in Experimental Autoimmune Uveitis. Curr Mol Med 2018;17(7):478–487. doi:10.2174/1566524018666180207155614
  • TianF, DongL, ZhouY, et al. Rapamycin-induced apoptosis in HGF-stimulated lens epithelial cells by AKT/mTOR, ERK and JAK2/STAT3 pathways. Int J Mol Sci. 2014;15:13833–13848. doi:10.3390/ijms15081383325116684
  • WeiR, DongL, XiaoQ, SunD, LiX, NianH. Engagement of Toll-like receptor 2 enhances interleukin (IL)-17(+) autoreactive T cell responses via p38 mitogen-activated protein kinase signalling in dendritic cells. Clin Exp Immunol. 2014;178:353–363. doi:10.1111/cei.2014.178.issue-224965660
  • ShaoY, ChenJ, DongLJ, et al. A Protective Effect of PPARα in Endothelial Progenitor Cells Through Regulating Metabolism. Diabetes. 2019;68(11):2131–2142. doi:10.2337/db18-1278.31451517
  • ShaoY, DongLJ, ZhangY, et al. Surgical induced astigmatism correlated with corneal pachymetry and intraocular pressure: transconjunctival sutureless 23-gauge versus 20-gauge sutured vitrectomy in diabetes mellitus. Int J Ophthalmol. 2015;8(3):528.26086002
  • ElRS, NewcombEW. Identification of Bcd, a novel proto-oncogene expressed in B-cells. Oncogene. 1996;13:2623–2630.9000136
  • SelvanayagamZE, CheungTH, WeiN, et al. Prediction of chemotherapeutic response in ovarian cancer with DNA microarray expression profiling. Cancer Genet Cytogenet. 2004;154:63–66. doi:10.1016/j.cancergencyto.2004.01.02415381375
  • SpentzosD, LevineDA, KoliaS, et al. Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J Clin Oncol. 2005;23:7911. doi:10.1200/JCO.2005.02.936316204010
  • BrownGJ, JohnDS, MacraeFA, AittomäkiK. Cancer risk in young women at risk of hereditary nonpolyposis colorectal cancer: implications for gynecologic surveillance. Gynecol Oncol. 2001;80:346. doi:10.1006/gyno.2000.606511263929
  • NarlaG, HeathKE, ReevesHL, et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science. 2001;294:2563–2566. doi:10.1126/science.106632611752579
  • NarlaG, Kremer-TalS, MatsumotoN, et al. In vivo regulation of p21 by the Kruppel-like factor 6 tumor-suppressor gene in mouse liver and human hepatocellular carcinoma. Oncogene. 2007;26:4428. doi:10.1038/sj.onc.121022317297474
  • BenzenoS, NarlaG, AllinaJ, et al. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1. Cancer Res. 2004;64:3885–3891. doi:10.1158/0008-5472.CAN-03-281815172998
  • Ghiassi-NejadZ, Hernandez-GeaV, WoodrellC, et al. Reduced hepatic stellate cell expression of kruppel‐like factor 6 tumor suppressor isoforms amplifies fibrosis during acute and chronic rodent liver injury. Hepatology. 2013;57:786. doi:10.1002/hep.2605622961688
  • BanckMS, BeavenSW, NarlaG, WalshMJ, FriedmanSL, BeutlerAS. KLF6 degradation after apoptotic DNA damage. FEBS Lett. 2006;580:6981. doi:10.1016/j.febslet.2006.10.07717113081
  • HuangX, LiX, GuoB. KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J Biol Chem. 2008;283:29795. doi:10.1074/jbc.M80251520018755691
  • ItoG, UchiyamaM, KondoM, et al. Krüppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res. 2004;64:3838–3843. doi:10.1158/0008-5472.CAN-04-018515172991
  • JianweiZ, EnzhongB, FanL, JianL, NingA. Effects of Kruppel-like factor 6 on osteosarcoma cell biological behavior. Tumour Biol. 2013;34:1097–1105. doi:10.1007/s13277-013-0651-023322324
  • SzegezdiE, LogueSE, GormanAM, SamaliA. Mediators of endoplasmic reticulum stress‐induced apoptosis. EMBO Rep. 2006;7:880–885. doi:10.1038/sj.embor.740077916953201
  • OakesSA, PapaFR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2014;10:173. doi:10.1146/annurev-pathol-012513-10464925387057
  • FelsDR, KoumenisC. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006;5:723–728. doi:10.4161/cbt.5.7.296716861899
  • CaoJ, DaiDL, YaoL, et al. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem. 2012;364:115–129. doi:10.1007/s11010-011-1211-922246806
  • LaiX, OuyangJ, ShiY, PharmacyDO. Role of endoplasmic reticulum stress PERK- ATF4- CHOP pathway in matrine induced retinoblastoma apoptosis. Chin Pharm. 2015.
  • ChenY, GuiD, ChenJ, HeD, LuoY, WangN. Down-regulation of PERK-ATF4-CHOP pathway by astragaloside IV is associated with the inhibition of endoplasmic reticulum stress-induced podocyte apoptosis in diabetic rats. Cell Physiol Biochem. 2014;33:1975–1987. doi:10.1159/00036297425012492
  • RozpedekW, PytelD, MuchaB, LeszczynskaH, DiehlJA, MajsterekI. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 2016;16:533–544. doi:10.2174/156652401666616052314393727211800
  • AfonyushkinT, OskolkovaOV, PhilippovaM, et al. Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways. Arterioscler Thromb Vasc Biol. 2010;30:1007–1013. doi:10.1161/ATVBAHA.110.20435420185790
  • CuiZ, ZhouY, ZhouY, YingL, WangD. Regulation of eIF2α expression and renal interstitial fibrosis by resveratrol in rat renal tissue after unilateral ureteral obstruction. Ren Fail. 2016;38:1.26513593
  • PersengievSP, GreenMR. The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis. 2003;8:225. doi:10.1023/A:102363370413212766482
  • ZmudaEJ, QiL, ZhuMX, MirmiraRG, MontminyMR, HaiT. The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic beta-cell dysfunction. Mol Endocrinol. 2010;24:1423–1433. doi:10.1210/me.2009-046320519332
  • XuK, ZhouY, QiuW, et al. Activating transcription factor 3 (ATF3) promotes sublytic C5b-9-induced glomerular mesangial cells apoptosis through up-regulation of Gadd45α and KLF6 gene expression. Immunobiology. 2011;216:871–881. doi:10.1016/j.imbio.2011.02.00521396734
  • JiaL, EdagawaM, GoshimaH, et al. Role of ATF3 in synergistic cancer cell killing by a combination of HDAC inhibitors and agonistic anti-DR5 antibody through ER stress in human colon cancer cells. Biochem Biophys Res Commun. 2014;445:320–326. doi:10.1016/j.bbrc.2014.01.18424530917
  • NakagomiS, SuzukiY, NamikawaK, KiryuseoS, KiyamaH. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci. 2003;23:5187–5196. doi:10.1523/JNEUROSCI.23-12-05187.200312832543
  • YanC, LuD, HaiT, BoydDD. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2014;24:2425–2435. doi:10.1038/sj.emboj.7600712
  • ShanY, AkramA, AmatullahH, et al. ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation. Antioxid Redox Signal. 2015;22:651–668. doi:10.1089/ars.2014.598725401197
  • WengS, ZhouL, DengQ, et al. Niclosamide induced cell apoptosis via upregulation of ATF3 and activation of PERK in Hepatocellular carcinoma cells. BMC Gastroenterol. 2016;16:1–10. doi:10.1186/s12876-016-0442-326796772
  • TsaiDH, ChungCH, LeeKT. Antrodia cinnamomea induces autophagic cell death via the CHOP/TRB3/Akt/mTOR pathway in colorectal cancer cells. Sci Rep. 2018;8. doi:10.1038/s41598-018-35780-y
  • ZhouW, FangH, WuQ, et al. Ilamycin E, a natural product of marine actinomycete, inhibits triple-negative breast cancer partially through ER stress-CHOP-Bcl-2. Int J Biol Sci. 2019;15:1723–1732. doi:10.7150/ijbs.3528431360114
  • WangQ, MorajensenH, WenigerMA, et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci U S A. 2009;106:2200–2205. doi:10.1073/pnas.080761110619164757
  • Yong-MinC, Hey-YoungC, Muhammad AyazA, Han-KyulK, Ji-WoongK, SangdunC. ATF3 attenuates cyclosporin A-induced nephrotoxicity by downregulating CHOP in HK-2 cells. Biochem Biophys Res Commun. 2014;448:182–188. doi:10.1016/j.bbrc.2014.04.08324768635
  • YangMU, Liang-LiangLI, LiuYY, ZhangC, ZhouEM. Bax and Bcl-2 gene expression in porcine alveolar macrophages infected by porcine reproductive and respiratory syndrome virus. Chin J Vet Sci. 2013;33:1313–1615. doi:10.1007/s11425-013-4582-4
  • TheronKE, PennyCB, HosieMJ. The Bax/Bcl-2 apoptotic pathway is not responsible for the increase in apoptosis in the RU486-treated rat uterus during early pregnancy. Reprod Biol. 2013;13:290–297. doi:10.1016/j.repbio.2013.09.00224287037