1,270
Views
117
CrossRef citations to date
0
Altmetric
Review

In-vitro blood-brain barrier models for drug screening and permeation studies: an overview

, , , , &
Pages 3591-3605 | Published online: 18 Oct 2019

References

  • He Y, Yao Y, Tsirka SE, Cao Y. Cell-culture models of the blood–brain barrier. Stroke. 2014;45(8):2514–2526. doi:10.1161/STROKEAHA.114.00542724938839
  • Stern L, Gautier R II. Les Rapports Entre Le Liquide Céphalo-Rachidien Et Les éléments Nerveux De L’axe Cerebrospinal. Arch Int Physiol. 1922;17(4):391–448. doi:10.3109/13813452209146219
  • Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75(3):388–397. doi:10.1189/jlb.030311414612429
  • Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650–661. doi:10.1038/nrd236817667956
  • Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33(12):579–589. doi:10.1016/j.it.2012.07.00422926201
  • Jouyban A, Soltani S. Blood brain barrier permeation. Toxic Drug Test. In: Bill Acree, Editor, Croatia: InTech. 2012;1:1–24.
  • Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev. 2016;103:202–217. doi:10.1016/j.addr.2016.02.00826944096
  • Abbott NJ Physiology of the blood–brain barrier and its consequences for drug transport to the brain. Paper presented at: International Congress Series; 2005
  • Gajdács M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24(5):892. doi:10.3390/molecules24050892
  • Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328–363. doi:10.1016/j.brainresrev.2010.05.00320685221
  • Prinz M, Mildner A. Microglia in the CNS: immigrants from another world. Glia. 2011;59(2):177–187. doi:10.1002/glia.2110421125659
  • Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck M, Ferreira L. Stem cell-based human blood–brain barrier models for drug discovery and delivery. Trends Biotechnol. 2016;34(5):382–393. doi:10.1016/j.tibtech.2016.01.00126838094
  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd.2003.12.01615207256
  • Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–890. doi:10.1177/0271678X1663099126868179
  • Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98. doi:10.1602/neurorx.2.1.8615717060
  • Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76(1):22–76. doi:10.1016/j.pneurobio.2005.04.00616011870
  • Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007–1015. doi:10.1016/j.drudis.2017.11.01029155026
  • Kaushik A, Jayant RD, Nair M. Nanomedicine for neuroHIV/AIDS Management. London, UK: Future Medicine Ltd; 2018.
  • Kaushik A, Yndart A, Atluri V, et al. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep. 2019;9(1):3928. doi:10.1038/s41598-019-40222-430850620
  • Lee M, Jayant R. Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res. 2019;375(1):287–293. doi:10.1007/s00441-018-2959-y30535799
  • Surnar B, Basu U, Banik B, et al. Nanotechnology-mediated crossing of two impermeable membranes to modulate the stars of the neurovascular unit for neuroprotection. Proc Natl Acad Sci. 2018;115(52):E12333–E12342. doi:10.1073/pnas.181642911530530697
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–571. doi:10.1602/neurorx.2.4.55416489365
  • Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-brain delivery methods using nanotechnology. Pharmaceutics. 2018;10(4):269. doi:10.3390/pharmaceutics10040269
  • Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood–brain barrier In:  Milner R. Editor. Cerebral Angiogenesis: Methods and Protocols; NY: Humana Press. 2014;1135:415–437.
  • Garberg P, Ball M, Borg N, et al. In vitro models for the blood–brain barrier. Toxicol in Vitro. 2005;19(3):299–334. doi:10.1016/j.tiv.2004.06.01115713540
  • Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars). 2011;71(1):113–128.21499332
  • Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3):253–263. doi:10.1016/j.neuint.2008.12.00219111869
  • Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV. Modeling the blood–brain barrier using stem cell sources. Fluids Barriers CNS. 2013;10(1):2. doi:10.1186/2045-8118-10-223305164
  • Daniels BP, Cruz-Orengo L, Pasieka TJ, et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J Neurosci Methods. 2013;212(1):173–179. doi:10.1016/j.jneumeth.2012.10.00123068604
  • Franke H, Galla H-J, Beuckmann CT. An improved low-permeability in vitro-model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 1999;818(1):65–71. doi:10.1016/s0006-8993(98)01282-79914438
  • Hurst R, Fritz I. Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J Cell Physiol. 1996;167(1):81–88. doi:10.1002/(SICI)1097-4652(199604)167:1<81::AID-JCP9>3.0.CO;2-88698844
  • Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte‐derived angiopoietin‐1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie‐2 activation in vitro. J Neurochem. 2004;89(2):503–513. doi:10.1111/j.1471-4159.2004.02343.x15056293
  • Toimela T, Mäenpää H, Mannerström M, Tähti H. Development of an in vitro blood–brain barrier model—cytotoxicity of mercury and aluminum. Toxicol Appl Pharmacol. 2004;195(1):73–82. doi:10.1016/j.taap.2003.11.00214962507
  • Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–561. doi:10.1038/nature0952220944627
  • Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–566. doi:10.1038/nature0951320944625
  • Atluri VSR, Jayant RD, Pilakka-Kanthikeel S, et al. Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. Int J Nanomedicine. 2016;11:4287. doi:10.2147/IJN.S10832927621622
  • Jayant R. Layer-by-Layer (LbL) assembly of anti HIV drug for sustained release to brain using magnetic nanoparticle. Paper presented at: Journal of Neuroimmune Pharmacology; 2014.
  • Jayant R, Nair M. Nanotechnology for the treatment of neuroAIDS. J Nanomed Res. 2016;3(1):00047. doi:10.15406/jnmr.2016.03.00047
  • Jayant R, Nair M. Role of biosensing technology for neuroAIDS management. J Biosens Bioelectron. 2016;7(1).
  • Jayant RD, Madhavan N Materials and methods for sustained release of active compounds. US Patent App. 15/082,611. 2016.
  • Kaushik A, Jayant RD, Nair M. Advancements in nano-enabled therapeutics for neuroHIv management. Int J Nanomedicine. 2016;11:4317. doi:10.2147/IJN.S10994327621624
  • Tomitaka A, Arami H, Raymond A, et al. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale. 2017;9(2):764–773. doi:10.1039/c6nr07520g27976764
  • Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun. 2013;4:1707. doi:10.1038/ncomms271723591874
  • Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One. 2013;8(4):e62241. doi:10.1371/journal.pone.006224123653680
  • Ding H, Sagar V, Agudelo M, et al. Enhanced blood–brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology. 2014;25(5):055101. doi:10.1088/0957-4484/25/5/05510124406534
  • Nakagawa S, Deli MA, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27(6):687–694. doi:10.1007/s10571-007-9195-417823866
  • Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50. doi:10.1016/j.brainres.2007.02.02917368578
  • Tarbell JM. Shear stress and the endothelial transport barrier. Cardiovasc Res. 2010;87(2):320–330. doi:10.1093/cvr/cvq14620543206
  • Bussolari SR, Dewey CF Jr, Gimbrone MA Jr. Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum. 1982;53(12):1851–1854. doi:10.1063/1.11369097156852
  • Naik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–1354. doi:10.1002/jps.2302222213383
  • Koutsiaris AG, Tachmitzi SV, Batis N, et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology. 2007;44(5–6):375–386.18401076
  • Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D. Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 2007;48(3):505–516. doi:10.1111/j.1528-1167.2006.00960.x17326793
  • Cucullo L, Marchi N, Hossain M, Janigro D. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 2011;31(2):767–777. doi:10.1038/jcbfm.2010.16220842162
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip. 2012;12(10):1784–1792. doi:10.1039/c2lc40094d22422217
  • Prabhakarpandian B, Shen M-C, Nichols JB, et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 2013;13(6):1093–1101. doi:10.1039/c2lc41208j23344641
  • Booth R, Kim H A multi-layered microfluidic device for in vitro bloodbrain barrier permeability studies. Paper presented at: International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2011.
  • Kokubu Y, Yamaguchi T, Kawabata K. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun. 2017;486(2):577–583. doi:10.1016/j.bbrc.2017.03.09228336435
  • Page S, Patel R, Raut S, Al-Ahmad A. Neurological diseases at the blood-brain barrier: stemming new scientific paradigms using patient-derived induced pluripotent cells. Biochim Biophys Acta Mol Basis Dis. 2018. doi:10.1016/j.bbadis.2018.12.009
  • Li Y, Sun X, Liu H, et al. Development of human in vitro brain-blood barrier model from induced pluripotent stem cell-derived endothelial cells to predict the in vivo permeability of drugs. Neurosci Bull. 2019:1–15. doi:10.1007/s12264-019-00384-730659525
  • Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS. 2017;14(1):9. doi:10.1186/s12987-017-0059-028407791
  • Canfield SG, Stebbins MJ, Morales BS, et al. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140(6):874–888. doi:10.1111/jnc.1392327935037
  • Vastag M, Keseru GM. Current in vitro and in silico models of blood-brain barrier penetration: a practical view. Curr Opin Drug Discov Devel. 2009;12(1):115–124.
  • Abbott NJ. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004;1(4):407–416. doi:10.1016/j.ddtec.2004.11.01424981621
  • Goodwin JT, Clark DE. In silico predictions of blood-brain barrier penetration: considerations to “Keep in mind”. J Pharmacol Exp Ther. 2005;315(2):477–483. doi:10.1124/jpet.104.07570515919767
  • Mensch J, Oyarzabal J, Mackie C, Augustijns P. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J Pharm Sci. 2009;98(12):4429–4468. doi:10.1002/jps.2174519408294
  • Deli MA. Drug Transport and the Blood-brain Barrier. Solubility, Delivery, and ADME Problems of Drugs and Drug-Candidates. Washington: Bentham Science Publ Ltd; 2011:144–165.
  • Bendels S, Kansy M, Wagner B, Huwyler J. In silico prediction of brain and CSF permeation of small molecules using PLS regression models. Eur J Med Chem. 2008;43(8):1581–1592. doi:10.1016/j.ejmech.2007.11.01118206268
  • Garg P, Verma J, Roy N. In silico modeling for blood—brain barrier permeability predictions. In: Ehrhardt C, Kim KJ, Editors Drug Absorption Studies. Springer; 2008;VII:510–556.
  • Konovalov DA, Coomans D, Deconinck E, Vander Heyden Y. Benchmarking of QSAR models for blood-brain barrier permeation. J Chem Inf Model. 2007;47(4):1648–1656. doi:10.1021/ci700100f17602606
  • Liu X, Tu M, Kelly RS, Chen C, Smith BJ. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos. 2004;32(1):132–139. doi:10.1124/dmd.32.1.13214709630
  • Abraham MH. The factors that influence permeation across the blood–brain barrier. Eur J Med Chem. 2004;39(3):235–240. doi:10.1016/j.ejmech.2003.12.00415051171
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1
  • Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.00724981612
  • Glave W, Hansch C. Relationship between lipophilic character and anesthetic activity. J Pharm Sci. 1972;61(4):589–591. doi:10.1002/jps.26006104205014317
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553. doi:10.1602/neurorx.2.4.54116489364
  • Hitchcock SA. Blood–brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol. 2008;12(3):318–323. doi:10.1016/j.cbpa.2008.03.01918435937
  • Levin VA, Dolginow D, Landahl HD, Yorke C, Csejtey J. Relationship of octanol/water partition coefficient and molecular weight to cellular permeability and partitioning in S49 lymphoma cells. Pharm Res. 1984;1(6):259–266. doi:10.1023/A:101639390212324277359
  • Young RC, Mitchell RC, Brown TH, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem. 1988;31(3):656–671. doi:10.1021/jm00398a0282894467
  • Abraham MH, Takács‐Novák K, Mitchell RC. On the partition of ampholytes: application to blood–brain distribution. J Pharm Sci. 1997;86(3):310–315. doi:10.1021/js960328j9050798
  • Liu X, Chen C, Smith BJ. Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther. 2008;325(2):349–356. doi:10.1124/jpet.107.13029418203948
  • Sakolish CM, Esch MB, Hickman JJ, Shuler ML, Mahler GJ. Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine. 2016;5:30–39. doi:10.1016/j.ebiom.2016.02.02327077109
  • Veszelka S, Kittel Á, Deli MA. Tools of Modelling Blood–brain Barrier Penetrability. Solubility, Delivery and ADME Problems of Drugs and Drug Candidates. Washington: Bentham Science; 2011:166–188.
  • Tornabene E, Brodin B. Stroke and drug delivery—in vitro models of the ischemic blood-brain barrier. J Pharm Sci. 2016;105(2):398–405. doi:10.1016/j.xphs.2015.11.04126869407
  • Wang JD, Khafagy E-S, Khanafer K, Takayama S, ElSayed MEH. Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood–brain barrier. Mol Pharm. 2016;13(3):895–906. doi:10.1021/acs.molpharmaceut.5b0080526751280