529
Views
72
CrossRef citations to date
0
Altmetric
Review

Smart Targeting To Improve Cancer Therapeutics

, ORCID Icon, , , , , & ORCID Icon show all
Pages 3753-3772 | Published online: 30 Oct 2019

References

  • Urruticoechea A, Alemany R, Balart J, et al. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10. doi:10.2174/13816121078994184720214614
  • Burstein HJ, Krilov L, Aragon-Ching JP, et al. Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2017;35:1341–1367.28148207
  • Parkhill LA. Oral mucositis and stomatitis associated with conventional and targeted anticancer therapy. J Pharmacovigil. 2013;1:112. doi:10.4172/2329-6887.1000112
  • Musha A, Shimada H, Shirai K, et al. Prediction of acute radiation mucositis using an oral mucosal dose surface model in carbon ion radiotherapy for head and neck tumors. PLoS One. 2015;10:1–10.
  • Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–659.23706631
  • Pastorelli D, Soldá C. Chemotherapy-induced nausea and vomiting (CINV): the achilles heel of oncologists. Chemother. 2015;4:154.
  • Mondal J, Panigrahi AK, Khuda-Bukhsh AR. Conventional chemotherapy: problems and scope for combined therapies with certain herbal products and dietary supplements. Austin J Mol Cell Biol. 2014;1:1–10.
  • Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017;17:10.28056859
  • Friberg S, Nyström AM. Nanomedicine: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnology. 2016;14:1–17.26743777
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–726. doi:10.1038/nrc359924060863
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–1792. doi:10.3390/cancers603176925198391
  • Yuan Y, Cai T, Xia X, et al. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 2016;23:3350–3357. doi:10.1080/10717544.2016.117882527098896
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951. doi:10.1038/nbt.333026348965
  • Ravi K. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3:234–258.10994037
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.
  • Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys. 2014;47:013001.
  • Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomed Nanotechnol Biol Med. 2007;3:103–110. doi:10.1016/j.nano.2006.12.002
  • Zhang L, Yang W, Hu C, Wang Q, Wu Y. Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Dovepress. 2018;13:2973–2987.
  • Chan JM, Valencia PM, Zhang L, et al. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–175.
  • Arayne MS, Sultana N, Qureshi F. Nanoparticles in delivery of cardiovascular drugs. Pak J Pharm Sci. 2007;20:340–348.17604260
  • Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine. 2013;8:969–981.23730696
  • Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–1170.17891134
  • Chen ZG. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010;16:594–602.20846905
  • Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev. 2012;64:505–519.22544864
  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12:39–50.
  • Muzykantov V, Muro S. Targeting delivery of drugs in the vascular system. Int J Transp Phenom. 2011;12:41–49.25328360
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target. 2007;15:457–464.17671892
  • Simon LC, Sabliov CM. Time analysis of poly(lactic-co-glycolic) acid nanoparticle uptake by major organs following acute intravenous and oral administration in mice and rats. Ind Biotechnol. 2013;9:19–23.
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–135.20304019
  • Upreti M, Jyoti A, Sethi P. Tumor microenvironment and nanotherapeutics. Transl Cancer Res. 2013;2:309–319.24634853
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–151.20441782
  • Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation. 2016;23:173–182.26237291
  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.25579058
  • Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5(2):34.
  • Islam W, Fang J, Imamura T, et al. Augmentation of the enhanced permeability and retention effect with nitric oxide-generating agents improves the therapeutic effects of nanomedicines. Mol Cancer Ther. 2018;17:2643–2653.30232144
  • Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev. 2011;63:640–658.21514334
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.20797419
  • Ranganathan R, Madanmohan S, Kesavan A, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine. 2012;7:1043–1060.22403487
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.2946403
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–1316.18316549
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–212.
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21:797–802.20397686
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Ori Invest. 2008;26:57–64.
  • Forster J, Harriss-Phillips W, Douglass M, et al. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia. 2017;5:21–32.28443291
  • Alexis F, Pridgen EM, Langer R, et al. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol. 2010;197:55–86.
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.11384745
  • Tang L, Yang X, Yin Q, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci. 2014;111:15344–15349.25316794
  • Biswas AK, Islam MR, Choudhury ZS, et al. Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci Nanosci Nanotechnol. 2014;5:4.
  • Kwon IK, Lee SC, Han B, et al. Analysis on the current status of targeted drug delivery to tumors. J Control Release. 2012;164:108–114.22800574
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (part 1). Trop J Pharm Res. 2013;12(2):255–264.
  • Rhame K, Dagher N. Chemistry routes for copolymer synthesis containing PEG for targeting, imaging, and drug delivery purposes. Pharmaceutics. 2019;11(7):327.
  • Shan NB, Vercellotti GM, White JG, et al. Blood-nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharm. 2012;9(8):2146–2155.22668197
  • Cruje C, Chithrani BD. Integration of peptides for enhanced uptake of PEGylated gold nanoparticles. J Nanosci Nanotechnol. 2015;15(3):2125–2131.26413630
  • Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016;11:337–348.
  • Ma SS, Ho SH, Ma SY, et al. The pharmacokinetic and pharmacodynamic properties of site-specific pegylated genetically modified recombinant human interleukin-11 in normal and thrombocytopenic monkeys. Eur J Pharm Biopharm. 2017;119:185–191.28596035
  • Majtan T, Bublil EM, Park I, et al. Pharmacokinetics and pharmacodynamics of PEGylated truncated human cystathionine beta-synthase for treatment of homocystinuria. Life Sci. 2018;200:15–25.29526799
  • Zhang F, Zhang S, Pollack SF, et al. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. J Am Chem Soc. 2015;137:2056–2066.25629952
  • Jain A, Barve A, Zhao Z, et al. Targeted delivery of an siRNA/PNA hybrid nanocomplex reserves carbon tetrachloride-induced liver fibrosis. Adv Ther. 2019;2:1900046.
  • Zhao Z, Li Y, Shukla R, et al. Development of a biocompatible copolymer nanocomplex to deliver VEGF siRNA for triple negative breast cancer. Theranostics. 2019;9(15):4508–4524.31285776
  • Hatakeyama H, Akita H, Harashima H. The polyethylene glycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36:892–899.23727912
  • Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013;3:499–503.24932437
  • Mohamed M, Abu A, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710–724.31275462
  • Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–336.31068982
  • Fang Y, Xue J, Gao S, et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 2017;24:22–32.29069920
  • Hatakeyama H, Akita H, Ito E, et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials. 2007;32(18):4306–4316.
  • Diamantis N, Banerji U. Antibody-drug conjugates - An emerging class of cancer treatment. Br J Cancer. 2016;114:362–367.26742008
  • Yao VJ, D’Angelo S, Butler KS, et al. Ligand-targeted theranostic nanomedicines against cancer. J Control Release. 2016;240:267–286.26772878
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.21376230
  • Jaracz S, Chen J, Kuznetsova LV, et al. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 2005;13:5043–5054.15955702
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48:416–427.23262059
  • Yang J, Yang J, Wei Y, et al. Modification of IL-24 by tumor penetrating peptide iRGD enhanced its antitumor efficacy against non-small cell lung cancer. Int Inmmunopharmacol. 2019;70:125–134.
  • Yu J, Sun L, Zhou J, et al. Self-assembled tumor-penetrating peptide-modified Poly(l-γ-glutamylglutamine)–paclitaxel nanoparticles based on hydrophobic interaction for the treatment of glioblastoma. Bioconjug Chem. 2017;28:2823–2831.28968068
  • Rosenblum D, Joshi D, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410.29650952
  • Siwak DR, Carey M, Hennessy BT, et al. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol. 2010;2010:1–20.
  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–419.19070661
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–287.22437872
  • Solomon M, Liu Y, Berezin MY, et al. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract. 2011;20:397–415.21757928
  • Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. PNAS. 2016;113:4164–4169.27035960
  • Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188:759–768.20231381
  • Kolate A, Baradia D, Patil S, et al. PEG — A versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67–81.24997275
  • Bao W, Liu R, Wang Y, et al. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int J Nanomedicine. 2015;10:557–566.25609961
  • Cruz LJ, Tacken PJ, Fokkink R, et al. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials. 2011;32:6791–6803.21724247
  • Su YC, Burnouf PA, Chuang KH, et al. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nat Commun. 2017;8:15507.28593948
  • Sun H, Zu Y. Aptamers and their applications in nanomedicine. Small. 2015;11:2352–2364.25677591
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.25813885
  • Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):640.
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2017;9:790–810.29675145
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14:203–219.25698644
  • Yang Y, Li N, Nie Y, et al. Folate-modified poly(malic acid) graft polymeric nanoparticles for targeted delivery of doxorubicin: synthesis, characterization and folate receptor expressed cell specificity. J Biomed Nanotechnol. 2015;11:1628–1639.26485931
  • Xing L, Xu Y, Sun K, et al. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep. 2018;8:8426.29849110
  • Cal P, Frade R, Chudasama V, et al. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates. Chem Commun. 2014;50:5261–5263.
  • Assaraf Y, Leamon C, Reddy J. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat. 2014;17:89–95.25457975
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;4:790–810.
  • Zwicke GL, Ali Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3:18496.
  • Shi H, Guo J, Li C, et al. A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer. Drug Des Devel Ther. 2015;9:4989–4996.
  • Shen J, Hu Y, Putt KS, et al. Assessment of folate receptor alpha and beta expression in selection of lung and pancreatic cancer patients for receptor targeted therapies. Oncotarget. 2018;9:4485–4495.29435118
  • Shen J, Putt KS, Visscher DW, et al. Assessment of folate receptor-beta expression in human neoplastic tissues. Oncotarget. 2015;6:14700–14709.25909292
  • Morales-Cruz M, Cruz-Montañez A, Figueroa CM, et al. Combining stimulus-triggered release and active targeting strategies improves cytotoxicity of cytochrome c nanoparticles in tumor cells. Mol Pharm. 2016;13:2844–2854.27283751
  • Kawamoto M, Horibe T, Kohno M, et al. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer. 2011;11:359.21849092
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Subj. 2012;1820(3):291–317. doi:10.1016/j.bbagen.2011.07.016
  • Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8:916–931.30034931
  • Shimosaki S, Nakahata S, Ichikawa T, et al. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem Biophys Res Commun. 2017;485:144–151. doi:10.1016/j.bbrc.2017.02.03928189691
  • Daniels-Wells T, Widney D, Leoh L, et al. Efficacy of an anti-transferrin receptor 1 antibody against AIDS-related non-hodgkin lymphoma: a brief communication. J Immunother. 2015;38:307–310. doi:10.1097/CJI.000000000000009226325374
  • Leoh L, Kim YK, Candelaria P, et al. Efficacy and mechanism of antitumor activity of an antibody targeting transferrin receptor 1 in mouse models of human multiple myeloma. J Immunol. 2018;200:3485–3494. doi:10.4049/jimmunol.170078729654211
  • Saxena M, Delgado Y, Sharma RK, et al. Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate. PLoS One. 2018;13:e0195542. doi:10.1371/journal.pone.019554229649293
  • Heinemann V, Stintzing S, Kirchner T, et al. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev. 2009;35:262–271. doi:10.1016/j.ctrv.2008.11.00519117687
  • Creixell M, Bohórquez A, Torres-Lugo M, et al. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5:7124–7129. doi:10.1021/nn202666w21838221
  • Thorne AH, Zanca C, Furnari F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro Oncol. 2016;18:914–918. doi:10.1093/neuonc/nov31926755074
  • Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33:369–385. doi:10.1053/j.seminoncol.2006.04.00316890793
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immuno therapy. Nat Rev Immunol. 2010;10:317–327. doi:10.1038/nri2744.20414205
  • Hartimath SV, Alizadeh E, Solomon VR, et al. Preclinical evaluation of 111 in-labeled PEGylated maytansine nimotuzumab drug conjugates in EGFR-positive cancer models. J Nucl Med. 2019;17:118.
  • Poiroux G, Barre A, Van Damme EJM, et al. Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int J Mol Sci. 2017;18:1232. doi:10.3390/ijms18061232
  • Binkhathlan Z, Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets. 2013;13:326–346. doi:10.2174/1568009611313999007623369096
  • Nobili S, Landini I, Mazzei T, et al. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev. 2012;32:1220–1262. doi:10.1002/med.2023921374643
  • Shimomura O, Oda T, Tateno H, et al. A novel therapeutic strategy for pancreatic cancer: targeting cell surface glycan using rBC2LC-N lectin-drug conjugate (LDC). Mol Cancer Ther. 2018;17:183–195. doi:10.1158/1535-7163.MCT-17-023228939555
  • Sherman L, Sleeman J, Herrlich P, et al. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol. 1994;6:726–733. doi:10.1016/0955-0674(94)90100-77530464
  • Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6:201.25999946
  • De la Motte CA, Drazba JA. Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer. J Histochem Cytochem. 2011;59(3):252–257. doi:10.1369/002215541141381721378279
  • Shigeishi H, Higashikawa K, Takechi M. Role of receptor for hyaluronan-mediated motility (RHAMM) in human head and neck cancers. J Cancer Res Clin Oncol. 2014;140:1629–1640. doi:10.1007/s00432-014-1653-z24676428
  • Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):64. doi:10.1186/s13045-018-0605-529747682
  • Yin T, Wang G, He S, et al. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol. 2016;300:41–45. doi:10.1016/j.cellimm.2015.11.00926677760
  • Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine. 2016;11:2341–2357. doi:10.2217/nnm-2016-023327526874
  • Edelman R, Assaraf YG, Levitzky I, et al. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget. 2017;8:24337–24353. doi:10.18632/oncotarget.1536328212584
  • Figueroa CM, Morales-Cruz M, Surarez BN, et al. Induction of cancer cell death by hyaluronic acid-mediated uptake of cytochrome c. J Nanomed Nanotechnol. 2015;6:316.27182458
  • Montagner IM, Merlo A, Carpanese D, et al. Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience. 2015;2:373–381. doi:10.18632/oncoscience.15026097871
  • Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med. 2015;21:560–570. doi:10.1016/j.molmed.2015.06.00526186888
  • Feni L, Neundorf I. The current role of cell-penetrating peptides in cancer therapy. Adv Exp Med Biol. 2017;1030:279–295.29081059
  • Taha A, Selma MH, Jawad A, et al. Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles. J Clust Sci. 2019;30(2):403–414. doi:10.1007/s10876-019-01497-9
  • Gronewold A, Horn M, Neundorf I. Design and biological characterization of novel cell-penetrating peptides preferentially targeting cell nuclei and subnuclear regions. Beilstein J Org Chem. 2018;14:1378–1388. doi:10.3762/bjoc.14.11629977402
  • Hsieh TH, Hsu CY, Tsai CF, et al. A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting β-catenin/LEF-1 signaling. Sci Rep. 2016;6:19156. doi:10.1038/srep1915626750754
  • El-Sayed NS, Shizari AN, Sajid MI, et al. Synthesis and antiproliferative activities of conjugates of paclitaxel and camptothecin with a cyclic cell-penetrating peptide. Molecules. 2019;24(7):E1427. doi:10.3390/molecules2407142730978971
  • Li W, Jia H, Wang J, et al. A CD44-specific peptide, RP-1, exhibits capacities of assisting diagnosis and predicting prognosis of gastric cancer. Oncotarget. 2017;8:30063–30076.28415792
  • Zhang D, Jia H, Wang Y, et al. A CD44 specific peptide developed by phage display for targeting gastric cancer. Biotechnol Lett. 2015;37(11):2311–2320. doi:10.1007/s10529-015-1896-z26140900
  • Finlayson M. Modulation of CD44 activity by A6-peptide. Front Immunol. 2015;6:135. doi:10.3389/fimmu.2015.0013525870596
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14:1629–1654. doi:10.3390/ijms1401162923344060
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–128. doi:10.1016/j.drudis.2014.10.00325450771
  • Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12:e0181748. doi:10.1371/journal.pone.018174828759605
  • Tao C, Chuah YJ, Xu C, et al. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B. 2019;7:357–367. doi:10.1039/c9tb00665f
  • Gradishar WJ, Krasnojon D, Cheporov S, et al. Albumin-bound paclitaxel (ab-pac) versus docetaxel for first-line treatment of metastatic breast cancer (MBC): final overall survival (OS) analysis of a randomized phase II trial. J Clin Oncol. 2017;29(27):275. doi:10.1200/jco.2011.29.27_suppl.275
  • ClinicalTrials.gov. Trial of FOLF(HA)Iri versus FOLFIRI in mCRC (FOLF(HA)iri). Available from: http://clinicaltrials.gov/show/NCT01290783 Accessed June 30, 2019.
  • Gibbs P, Clingan PR, Ganju V, et al. Hyaluronan-irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: a randomized phase II trial. Cancer Chemother Pharmacol. 2011;67:153–163. doi:10.1007/s00280-010-1303-320333384
  • Gordon E, Hall F. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10:819–832. doi:10.1517/14712598.2010.48166620384524
  • Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng. 2012;40:21–41. doi:10.1615/CritRevBiomedEng.v40.i122428797
  • Burger AM, Hartung G, Stehle G, et al. Pre-clinical evaluation of a methotrexate-albumin conjugate (MTX-HSA) in human tumor xenografts in vivo. Int J Cancer. 2001;92:718–724. doi:10.1002/1097-0215(20010601)92:5<718::aid-ijc1257>3.0.co;2-d11340578
  • Kaur K, Singh I, Kaur P, et al. Food and drug administration (FDA) approved peptide drugs. Asian J Res Biol Pharm Sci. 2015;3:75–88.
  • Ma L, Wang C, He Z, et al. Peptide-drug conjugate: a novel drug design approach. Curr Med Chem. 2017;25:3373–3396.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–2707. doi:10.1016/j.bmc.2017.06.05228720325
  • Kurzrock R, Gabrail N, Chandhasin C, et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther. 2012;11:308–316. doi:10.1158/1535-7163.MCT-11-0824-T22203732
  • Sun L-C, Mackey LV, Luo J, et al. Targeted chemotherapy using a cytotoxic somatostatin conjugate to inhibit tumor growth and metastasis in nude mice. Clin Med Oncol. 2008;2:491–499.21892324
  • Moody T, Mantey S, Pradhan T, et al. Development of high affinity camptothecin-bombesin conjugates that have targeted cytotoxicity for bombesin receptor-containing tumor. J Biol Chem. 2004;279(22):23580−23589. doi:10.1074/jbc.M40193820015016826
  • Moody T, Sun L, Mantey S, et al. In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin. J Pharmacol Exp Ther. 2006;318(3):1265−1272. doi:10.1124/jpet.106.10414116766720
  • Guan H, McGuire MJ, Li S, et al. Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of αvβ6-positive cancers. Bioconjug Chem. 2008;19:1813–1821. doi:10.1021/bc800154f18710273
  • Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem. 2005;48:1098–1106. doi:10.1021/jm049494r15715477
  • Kim JW, Lee HS. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int J Mol Med. 2004;14:529–535.15375578
  • Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH. Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol Cancer Ther. 2004;3(12):1593–1604.15634653
  • Kim H, Lee Y, Kang S, et al. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy. Nanotechnology. 2016;27(48). doi:10.1088/0957-4484/27/36/365202.
  • Kim H, Lee Y, Lee IH, et al. Synthesis and therapeutic evaluation of an aptide-docetaxel conjugate targeting tumor-associated fibronectin. J Control Release. 2014;178:118−124. doi:10.1016/j.jconrel.2014.01.01524462899
  • Tai W, Shukla RS, Qin B, et al. Development of a peptide-drug conjugate for prostate cancer therapy. Mol Pharm. 2011;8:901–912. doi:10.1021/mp200125j21510670
  • Hamley IW. PEG-peptide conjugates. Biomacromolecules. 2014;15(5):1543–1559. doi:10.1021/bm500246w24720400
  • Kim H, Hwang D, Choi M, et al. Antibody-assisted delivery of a peptide-drug conjugate for targeted cancer therapy. Mol Pharm. 2019;16(1):165–172. doi:10.1021/acs.molpharmaceut.9b0042230521347
  • Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal H. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019;24(6):1117. doi:10.3390/molecules24061117
  • Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol. 2013;4:354. doi:10.3389/fphys.2013.0035424367336
  • Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts. 2013;3(4):149–162. doi:10.5681/bi.2013.03624455478
  • Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. doi:10.1186/1475-2867-13-8924004445
  • Dalela M, Shrivastav TG, Kharbanda S, Singh H. pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl Mater Interfaces. 2015;7:26530–26548. doi:10.1021/acsami.5b0776426528585
  • Ding HM, Ma YQ. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep. 2013;3:2804. doi:10.1038/srep0280424076598
  • Kim D, Lee ES, Park K, et al. Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res. 2008;25:2074–2082. doi:10.1007/s11095-007-9382-518449626
  • Chuang CH, Wu PC, Tsai TH, et al. Development of pH-sensitive cationic PEGylated solid lipid nanoparticles for selective cancer-targeted therapy. J Biomed Nanotechnol. 2017;13(2):192–203. doi:10.1166/jbn.2017.233829377649
  • Zhao G, Long L, Zhang L, et al. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep. 2017;7:3383. doi:10.1038/s41598-017-03111-228611459
  • Liu Y, Wang W, Yang J, et al. Sun J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci. 2013;8:159–167. doi:10.1016/j.ajps.2013.07.021
  • Zhou L, Cheng R, Tao H, et al. Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. Biomacromolecules. 2011;15(5):1460–1467. doi:10.1021/bm101340u
  • Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:1–26. doi:10.1155/2012/736837
  • Mortera R, Vivero-Escoto J, Slowing II, et al. Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chem Commun. 2009;22:3219–3221. doi:10.1039/b900559e
  • Hong R, Han G, Fernández JM, et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006;128:1078–1079. doi:10.1021/ja056726i16433515
  • Méndez J, Monteagudo A, Griebenow K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug Chem. 2012;23:698–704. doi:10.1021/bc200301a22375899
  • Zhao M, Biswas A, Hu B, et al. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials. 2011;32:5223–5230. doi:10.1016/j.biomaterials.2011.03.06021514660
  • Morales-Cruz M, Figueroa CM, González-Robles T, et al. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles. J Nanobiotechnol. 2014;12:33. doi:10.1186/s12951-014-0033-9
  • Figueroa CM, Suárez BN, Molina AM, et al. Smart release nano-formulation of cytochrome C and hyaluronic acid induces apoptosis in cancer cells. J Nanomed Nanotechnol. 2017;8:427.28706754
  • Choi KY, Swierczewska M, Lee S, et al. Protease-activated drug development. Theranostics. 2012;2:156–179. doi:10.7150/thno.406822400063
  • Graeser R, Chung D, Esser N, et al. Synthesis and biological evaluation of an albumin-binding prodrug of doxorubicin that is cleaved by prostate-specific antigen (PSA) in a PSA-positive orthotopic prostate carcinoma model (LNCaP). Int J Cancer. 2008;122:1145–1154.17973264
  • Chipman S, Oldham F, Pezzoni G, et al. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine. 2006;1:375–383.17722272
  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1:1–13.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107.30119176
  • Gray MD, Lyon PC, Mannaris C, et al. Focused ultrasound hyperthermia for targeted drug release from thermosensitive liposomes: results from a phase I trial. Radiology. 2019;291:232–238.30644817
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–281.21617154
  • Dos Santos AF, Queiroz de Almeida DR, Terra LF, et al. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;5:25.
  • Van Straten D, Mashayekhi V, De Bruijn HS, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9(2):19.
  • Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6:297–307.27471670
  • Liang P, Huang K, Tung C, et al. A novel photodynamic therapy-based drug delivery system layered on a stent for treating cholangiocarcinoma. Biomed Microdevices. 2018;20:3.
  • Alves L, Ferreira L, Pacheco P, et al. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget. 2018;9:25342–25354.29861876
  • Calixto G, Bernegossi J, De Freitas L, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules. 2016;21:342.26978341
  • Molina AM, Morales-Cruz M, Cindy M, et al. Function as delivery system for photodynamic cancer therapy. J Nanomed Naotechnol. 2016;6:1–20.
  • Tu J, Wang T, Shi W, et al. Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. Biomaterials. 2012;33:7903–7914.22840227
  • Molina AM, Morales-Cruz M, Benítez M, et al. Redox-sensitive cross-linking enhances albumin nanoparticle function as delivery system for photodynamic cancer therapy. J Nanomed Nanotechnol. 2016;3.
  • Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69:6200–6207.19638572
  • Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8:1481–1493.29556336
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3:703–717.18817471
  • Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–875.18308418
  • Rijt SH, Bein T, Meiners S. Medical nanoparticles for next generation drug delivery to the lungs. Eur Resp J. 2014;44:765–774.
  • Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17:2879–2886.28287740
  • Yoshida M, Takimoto R, Murase K, et al. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach. PLoS One. 2012;7:e39545.22808043
  • Guarneri V, Frassoldati A, Bottini A, et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J Clin Oncol. 2012;30:1989–1995.22493419
  • Stish BJ, Chen H, Shu Y, et al. A bispecific recombinant cytotoxin (DTEGF13) targeting human interleukin-13 and epidermal growth factor receptors in a mouse xenograft model of prostate cancer. Clin Cancer Res. 2007;13:6486–6493.17975161
  • Goldstein R, Hanley C, Morris J, et al. Clinical investigation of the role of interleukin-4 and interleukin-13 in the evolution of prostate cancer. Cancers (Basel). 2011;3(4):4281–4293.24213139
  • Yau T, Dan X, Ng CC, et al. Lectins with potential for anti-cancer therapy. Molecules. 2015;20:3791–3810.25730388
  • Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol Med Hosp Infant Mex. 2016;73:372–379.29421281
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141:769–784.25005786
  • Padró T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia. 2002;16:1302–1310.12094254