154
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Transformation of Meloxicam Containing Nanosuspension into Surfactant-Free Solid Compositions to Increase the Product Stability and Drug Bioavailability for Rapid Analgesia

, , , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4007-4020 | Published online: 28 Nov 2019

References

  • Müller RH, Benita S, Böhm BHL. Emulsions and Nanosuspensions for the Formulation of Poorly Soluble Drugs. Stuttgart, Germany: Medpharm Scientific Publishers 1998;149–174.
  • Dahiya S, Pathak K, Dahiya R, et al. Nanoparticle engineering processes: industrial technologies for delivery of poorly water-soluble drugs. Egypt Pharm J. 2007;6:87–101.
  • Meng L, Mohammad A, Rajesh D, et al. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics. 2016;8:17–52. doi:10.3390/pharmaceutics8020017
  • Sharma P, denny WA, Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm. 2009;380:40–48. doi:10.1016/j.ijpharm.2009.06.02919576976
  • Malamatari M, Somavarapu S, Taylor KMG, et al. Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders. Exp Opin Drug Del. 2016;13:435–450. doi:10.1517/17425247.2016.1142524
  • Lee J, Cheng Y. Critical freezing rate in freeze drying nanocrystal dispersions. J Control Release. 2006;111:185–192. doi:10.1016/j.jconrel.2005.12.00316430987
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125:91–97. doi:10.1016/0378-5173(95)00122-Y
  • Ding Z, Wang L, Xing Y, Zhao Y, Wang Z, Han J. Enhanced oral bioavailability of celecoxib nanocrystalline solid dispersion based on wet media milling technique: formulation, optimization and in vitro/in vivo evaluation. Pharmaceutics. 2019;11:328–346. doi:10.3390/pharmaceutics11070328
  • Wiedmann TS, DeCastro L, Wood RW. Nebulization of nanoCrystalsTM: production of a respirable solid-in-liquid-in-air colloidal dispersion. Pharm Res. 1997;14:112–116. doi:10.1023/A:10120240215119034231
  • Bartos C, Jójárt-Laczkovich O, Katona G, et al. Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. Drug Des Dev Ther. 2018;12:1567–1580. doi:10.2147/DDDT.S159965
  • Chiang PC, Wahlstrom JL, Selbo JG, et al. 1,3- Dicyclohexyl urea nanosuspension for intravenous steady-state delivery in rats. J Exp Nanosci. 2007;2:239–250. doi:10.1080/17458080601134540
  • Zhang Y, Fei S, Yu M, et al. Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology. Drug Dev Ind Pharm. 2018;44:1591–1597. doi:10.1080/03639045.2018.148338229847181
  • Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Recent Pat Nanomed. 2018;8:88–99.
  • Ostrander KD, Bosch HW, Bondanza DM. An in-vitro assessment of a nanoCrystalTM beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur J Pharm Biopharm. 1999;48:207–215. doi:10.1016/S0939-6411(99)00049-110612031
  • Vergote GJ, Nervaet C, Van Driessche I, et al. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;2019:81–87.
  • Merisko-Liversidge E, Sarpotdar P, Bruno J, et al. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res. 1996;13:272–278. doi:10.1023/A:10160513168158932448
  • Siewert C, Moog R, Alex R, Kretzer P, Rothenhäusler B. Process and scaling parameters for wet media milling in early phase drug development: a knowledge-based approach. Eur J Pharm Sci. 2018;115:126–131. doi:10.1016/j.ejps.2017.12.02229278757
  • Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62:1569–1579. doi:10.1111/j.2042-7158.2010.01022.x21039542
  • Kim CJ. Surface Chemistry and Colloids in Advanced Pharmaceutics: Physico-Chemical Principles. Florida, USA: CRC Press; 2004:193–256.
  • Derjaguin BV, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chem. 1941;14:633–662.
  • Verma S, Kumar S, Gokhale R, Burgess JD. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406:145–152. doi:10.1016/j.ijpharm.2010.12.02721185926
  • Bhakay A, Azad M, Vizzotti E, et al. Enhanced recovery and dissolution of griseofulvin nanoparticles from surfactant-free nanocomposite microparticles incorporating wet-milled swellable dispersants. Drug Dev Ind Pharm. 2014;40:1509–1522. doi:10.3109/03639045.2013.83144223981202
  • Azad M, Afolabi A, Bhakay A, et al. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a super disintegrant and an adsorbing polymer. Eur J Pharm Biopharm. 2015;94:372–385. doi:10.1016/j.ejpb.2015.05.02826079832
  • Hye_in K, Sang YP, Seok JP, et al. Development and evaluation of a reconstitutable dry suspension ti improve the dissolution and oral absorption of poorly water-soluble celecoxib. Pharmceutics. 2018;10:140. doi:10.3390/pharmaceutics10030140
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–469. doi:10.1016/j.addr.2011.02.00121315781
  • Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172:1126–1141. doi:10.1016/j.jconrel.2013.08.00623954372
  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, et al. Drying of crystalline drug nanosuspensions—the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci. 2008;35:127–135. doi:10.1016/j.ejps.2008.06.00918644441
  • Kumari Prasad L, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42:1019–1031. doi:10.3109/03639045.2015.112074326625986
  • Colombo M, Orthmann S, Bellini M, et al. Influence of drug brittleness, nanomilling time, and freeze-drying on the crystallinity of poorly water-soluble drugs and its implications for solubility enhancement. AAPS Pharm Sci Tech. 2017;18:2437–2445. doi:10.1208/s12249-017-0722-4
  • Kayaert P, Anné M, Van den Mooter G. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads. J Pharm Pharmacol. 2011;63:1446–1453. doi:10.1111/j.2042-7158.2011.01351.x21988425
  • He W, Lu Y, Qi J, et al. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution. Int J Nanomedicine. 2013;8:3119–3128. doi:10.2147/IJN.S4620723983465
  • Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm. 2006;62:282–287. doi:10.1016/j.ejpb.2005.09.00516377161
  • Jójárt-Laczkovich O, Szabó-Révész P. Formulation of tablets containing an ’in-process’ amorphized active pharmaceutical ingredient. Drug Dev Ind Pharm. 2011;37:1272–1281. doi:10.3109/03639045.2011.56993321457129
  • Szabó-Révész P. Modifying the physicochemical properties of NSAIDs for nasal and pulmonary administration. Drug Discov Today Technol. 2018;27:87–93. doi:10.1016/j.ddtec.2018.03.00230103868
  • Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437. doi:10.1124/pr.56.3.315317910
  • Bartos C, Szabó-Révész P, Bartos C, et al. The effect of an optimized wet milling technology on the crystallinity, morphology and dissolution properties of micro- and nanonized meloxicam. Molecules. 2016;21:507–518. doi:10.3390/molecules2104050727110752
  • Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with image. J Biophotonics Int. 2004;11:36–42.
  • Mártha C, Kürti L, Farkas G, et al. Effects of polymers on the crystallinity of nanonized meloxicam during a co-grinding process. Eur Polym J. 2013;49:2426–2432. doi:10.1016/j.eurpolymj.2013.03.006
  • Aulton ME, Livingstone C. Aulton’s Pharmaceutics, the Design and Manufacture of Medicines. Elsevier; 2007.
  • Cardot JM, Davit BM. In vitro–in vivo correlations: tricks and traps. AAPS J. 2012;14:491–499. doi:10.1208/s12248-012-9359-022547350
  • Kevin J. Using nondestructive in-situ measurements to ensure lyophilized product stability. Biopharm Int. 2018;31:24–25.
  • Kian LK, Jawaid M, Ariffin H, et al. Isolation and characterization of microcrystalline cellulose from roselle fibers. Int Biol Macromol. 2017;103:931–940. doi:10.1016/j.ijbiomac.2017.05.135
  • Sussich F, Cesàro A. Trehalose amorphization and recrystallization. Carbohyd Rev. 2008;343:2667–2674. doi:10.1016/j.carres.2008.08.008
  • Busch U, Schmid J, Heinzel G, et al. Pharmacokinetics of meloxicam in animals and the relevance to humans. Drug Metab Dispos. 1998;26:576–584.9616195
  • Jójárt-Laczkovich O, Katona G, Aigner Z, et al. Investigation of recrystallization of amorphous trehalose through hot-humidity stage X-ray powder diffraction. Eur J Pharm Sci. 2016;95:145–151. doi:10.1016/j.ejps.2016.08.00327496047