193
Views
19
CrossRef citations to date
0
Altmetric
Review

Effect and Molecular Mechanisms of Traditional Chinese Medicine on Tumor Targeting Tumor-Associated Macrophages

ORCID Icon, &
Pages 907-919 | Published online: 28 Feb 2020

References

  • LiJ, LinH-S. Integrative medicine: a characteristic China model for cancer treatment. Chin J Integr Med. 2011;17(4):243–245. doi:10.1007/s11655-011-0712-421509664
  • LiJ, LiL, LiuR, LinH-S. Establishing Chinese medicine characteristic tumour response evaluation system is the key to promote internationalization of Chinese medicine oncology. Chin J Integr Med. 2012;18(10):730–736. doi:10.1007/s11655-012-1254-022965698
  • LuP, SuW, MiaoZ-H, NiuH-R, LiuJ, HuaQ-L. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med. 2008;14(1):33–36. doi:10.1007/s11655-007-9002-618219455
  • WangB, CuiJ. Treatment of mid-late stage NSCLC using sodium cantharidinate/vitamin B6/GP regimen in clinic. J Cancer Res Ther. 2014;10(5):79–81. doi:10.4103/0973-1482.13977124762491
  • GuoL, BaiS-P, ZhaoL, WangX-H. Astragalus polysaccharide injection integrated with vinorelbine and cisplatin for patients with advanced non-small cell lung cancer: effects on quality of life and survival. Med Oncol. 2012;29(3):1656–1662. doi:10.1007/s12032-011-0068-921928106
  • RuanLW, DengYC. [Study on effect of Xiaoaiping in enhancing efficacy of neoadjuvant chemotherapy for breast cancer and its mechanism]. Zhongguo Zhong Yao Za Zhi. 2015;40(4):749–752.26137702
  • LiuY, JiaZW, DongL, WangR, QiuGQ. A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. Evid Based Complement Alternat Med. 2008;5(3):337–344. doi:10.1093/ecam/nem03118830451
  • ZhongC, LiH-D, LiuD-Y, et al. Clinical study of hepatectomy combined with Jianpi Huayu Therapy for hepatocellular carcinoma. Asian Pac J Cancer Prev. 2014;15(14):5951–5957. doi:10.7314/APJCP.2014.15.14.595125081728
  • QinT-J, ZhaoX-H, YunJ, ZhangL-X, RuanZ-P, PanB-R. Efficacy and safety of gemcitabine-oxaliplatin combined with huachansu in patients with advanced gallbladder carcinoma. World J Gastroenterol. 2008;14(33):5210–5216. doi:10.3748/wjg.14.521018777599
  • JamesMI, IwujiC, IrvingG, et al. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett. 2015;364(2):135–141. doi:10.1016/j.canlet.2015.05.00525979230
  • LuD-R, LiD-Y, ChenX-Y, YeP-Z, TianS-D. Clinical research of compound Zhebei granules for increasing the therapeutic effect of chemotherapy in refractory acute leukemia patients. J Tradit Chin Med. 2009;29(3):190–194. doi:10.1016/S0254-6272(09)60063-719894383
  • XuL, FengJ-M, LiJ-X, et al. Tanshinone-1 induces tumour cell killing, enhanced by inhibition of secondary activation of signaling networks. Cell Death Dis. 2013;4(11):e905–e905. doi:10.1038/cddis.2013.44324201804
  • JiaY, GuanQ, GuoY, DuC. Reduction of inflammatory hyperplasia in the intestine in colon cancer-prone mice by water-extract of Cistanche deserticola. Phytother Res. 2012;26(6):812–819. doi:10.1002/ptr.v26.622072545
  • NoyR, PollardJW. Tumour-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. doi:10.1016/j.immuni.2014.06.01025035953
  • SteidlC, LeeT, ShahSP, et al. Tumour-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362:85–87. doi:10.1056/NEJMoa090568020058342
  • PollardJW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–78. doi:10.1038/nrc125614708027
  • SicaA, SchioppaT, MantovaniA, AllavenaP. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(60):717–727. doi:10.1016/j.ejca.2006.01.00316520032
  • ZhengX, TurkowskiK, MoraJ, et al. Redirecting tumour-associated macrophages to become tumouricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436–48452. doi:10.18632/oncotarget.1706128467800
  • HuiL, ChenY. Tumour microenvironment: sanctuary of the devil. Cancer Lett. 2015;368:7–13. doi:10.1016/j.canlet.2015.07.03926276713
  • ChanmeeT, OntongP, KonnoK, ItanoN. Tumourassociated macrophages as major players in the tumour microenvironment. Cancers (Basel). 2014;6:70–90. doi:10.3390/cancers6031670
  • RuffellB, CoussensLM. Macrophages and Therapeutic Resistance in Cancer. Cancer Cell. 2015;27:62–72. doi:10.1016/j.ccell.2015.02.015
  • MantovaniA, LocatiM. Tumour-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization. Arterioscler Thromb Vasc Biol. 2013;33:78–83. doi:10.1161/ATVBAHA.113.300168
  • TravesPG, LuqueA, HortelanoS. Macrophages, inflammation, and tumour suppressors: ARF, a new player in the game. Mediators Inflamm. 2012;10:1–11.
  • SicaA, MantovaniA. Macrophage plasticity and polarization: in vivo veritas. J Clinl Investig. 2012;122(3):787–795. doi:10.1172/JCI59643
  • Martin BrownJ, RechtL, StroberS. The promise of targeting macrophages in cancer therapy. Clin Cancer Res. 2017;23(13):3241–3250. doi:10.1158/1078-0432.CCR-16-312228341752
  • ZhangJ, CaoJ, MaS, et al. Tumour hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget. 2014;5:9664–9677. doi:10.18632/oncotarget.185625313135
  • PyonteckSM, AkkariL, SchuhmacherAJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–1272. doi:10.1038/nm.333724056773
  • MantovaniA, SicaA, SozzaniS, AllavenaP, VecchiA, LocatiM. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686. doi:10.1016/j.it.2004.09.01515530839
  • CovarrubiasAJ, AksoylarHI, HorngT. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27(4):286–296. doi:10.1016/j.smim.2015.08.00126360589
  • ItalianiP, BoraschiD. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514. doi:10.3389/fimmu.2014.0051425368618
  • HumeDA. The many alternative faces of macrophage activation. Front Immunol. 2015;22(6):370–378.
  • MillsCD, HarrisRA, LeyK. Macrophage polarization: decisions that affect health. J Clin Cell Immunol. 2015;6(5):364–366. doi:10.4172/2155-9899.100036426962469
  • OstuniR, KratochvillF, MurrayPJ, NatoliG. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 2015;36(4):229–239. doi:10.1016/j.it.2015.02.00425770924
  • SoaveDF, MiguelMP, ToméFD, de MenezesLB, NagibPRA, CelesMRN. The fate of the tumour in the hands of microenvironment: role of TAMs and mTOR pathway. Mediators Inflamm. 2016;10:1–7.
  • SolinasG, GermanoG, MantovaniA, AllavenaP. Tumour-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–1073. doi:10.1189/jlb.060938519741157
  • CondeelisJ, PollardJW. Macrophages: obligate partners for tumour cell migration, invasion, and metastasis. Cell. 2006;124(2):263–266. doi:10.1016/j.cell.2006.01.00716439202
  • MantovaniA, SicaA, AllavenaP, GarlandaC, LocatiM. Tumour-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70(5):325–330. doi:10.1016/j.humimm.2009.02.00819236898
  • RaesG, de BaetselierP, NoelW, BeschinA, BrombacherF, HassanzadehGG. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol. 2002;71(4):597–602.11927645
  • NairMG, CochraneDW, AllenJE. Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro. Immunol Lett. 2003;85(2):173–180. doi:10.1016/S0165-2478(02)00225-012527225
  • TengX, LiD, ChampionHC, JohnsRA. FIZZ1/RELMα, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res. 2003;92(10):1065–1067. doi:10.1161/01.RES.0000073999.07698.3312714564
  • FranklinRA, LiaoW, SarkarA, et al. The cellular and molecular origin of tumour-associated macrophages. Science. 2014;344:921–925. doi:10.1126/science.125251024812208
  • HorladH, FujiwaraY, TakemuraK, et al. Corosolic acid impairs tumour development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 2013;57:1046–1054. doi:10.1002/mnfr.20120061023417831
  • LuoY, ZhouH, KruegerJ, et al. Targeting tumour-associated macrophages as a novel strategy against breast cancer. J Clinl Investig. 2006;116:2132–2141. doi:10.1172/JCI27648
  • RothF, De La FuenteAC, VellaJL, ZosoA, InverardiL, SerafiniP. Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumour progression. Cancer Res. 2012;72:1373–1383. doi:10.1158/0008-5472.CAN-11-277222282665
  • HuangW-C, ChanM-L, ChenM-J, TsaiT-H, ChenY-J. Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget. 2016;7(26):39363–39375.27276704
  • PangL, HanS, JiaoY, JiangS, XiranH, Li.P. Bu Fei Decoction attenuates the tumour associated macrophage stimulated proliferation, migration, invasion and immunosuppression of non-small cell lung cancer, partially via IL-10 and PD-L1 regulation. Int J Oncol. 2017;51:25–38. doi:10.3892/ijo.2017.401428534943
  • ChenXW, YuTJ, ZhangJ, et al. CYP4A in tumour-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene. 2017;36(35):5045–5057. doi:10.1038/onc.2017.11828481877
  • JiangY-X, ChenY, YangY, ChenX-X, Zhang-D-D. Screening Five Qi-Tonifying herbs on M2 phenotype macrophages. Evid Based Complement Alternat Med. 2019;10:1–8.
  • ZhaoX, QuJ, LiuX, et al. Baicalein suppress EMT of breast cancer by mediating tumour-associated macrophages polarization. Am J Cancer Res. 2018;8(8):1528–1540.30210921
  • TerabeM, MatsuiS, ParkJM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1drestricted T cells block cytotoxic T lymphocyte-mediated tumour immunosurveillance: abrogation prevents tumour recurrence. J Exp Med. 2003;198:1741–1752. doi:10.1084/jem.2002222714657224
  • ZeaAH, RodriguezPC, AtkinsMB, et al. Arginaseproducing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumour evasion. Cancer Res. 2005;65:3044–3048. doi:10.1158/0008-5472.CAN-04-450515833831
  • SicaA, BronteV. Altered macrophage differentiation and immune dysfunction in tumour development. J Clinl Investig. 2007;117:1155–1166. doi:10.1172/JCI31422
  • MunderM, EichmannK, ModolellM. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol. 1998;160:5347–5354.9605134
  • ShengJ, ChenW, ZhuHJ. The immune suppressive function of transforming growth factor-beta (TGF-beta) in human diseases. Growth Factors. 2015;33:92–101. doi:10.3109/08977194.2015.101064525714613
  • YoshimuraA, MutoG. TGF-beta function in immune suppression. Curr Top Microbiol Immunol. 2011;350:127–147.20680806
  • FlavellRA, SanjabiS, WrzesinskiSH, LiconaLimonP. The polarization of immune cells in the tumour ´ environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–567. doi:10.1038/nri280820616810
  • MaedaH, ShiraishiA. TGF-β contributes to the shift toward Th2-type responses through direct and IL-10- mediated pathways in tumour-bearing mice. J Immunol. 1996;156(1):73–78.8598496
  • LiuVC, WongLY, JangT, et al. Tumour evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumour-derived TGF-beta. J Immunol. 2007;178:2883–2892. doi:10.4049/jimmunol.178.5.288317312132
  • TaylorA, VerhagenJ, BlaserK, AkdisM, AkdisCA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117:433–442. doi:10.1111/imm.2006.117.issue-416556256
  • XuL, KitaniA, StroberW. Molecular mechanisms regulating TGF-beta-induced Foxp3 expression. Mucosal Immunol. 2010;3:230–238. doi:10.1038/mi.2010.720404810
  • CastriconiR, CantoniC, ChiesaMD, et al. Transforming growth factor β1 inhibits expression of NKP30 and NKG2d receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A. 2003;100(7):4120–4125. doi:10.1073/pnas.073064010012646700
  • GrutzG. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol. 2005;77:3–15. doi:10.1189/jlb.090448415522916
  • OuyangW, RutzS, CrellinNK, ValdezPA, HymowitzSG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109. doi:10.1146/annurev-immunol-031210-10131221166540
  • RuffellB, Chang-StrachanD, ChanV, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoural dendritic cells. Cancer Cell. 2014;26:623–637. doi:10.1016/j.ccell.2014.09.00625446896
  • BeissertS, HosoiJ, GrabbeS, AsahinaA, GransteinRD. IL-10 inhibits tumour antigen presentation by epidermal antigen-presenting cells. J Immunol. 1995;154(3):1280–1286.7822797
  • SicaA, SaccaniA, BottazziB, et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumour-associated macrophages. J Immunol. 2000;164(2):762–767. doi:10.4049/jimmunol.164.2.76210623821
  • FremdC, SchuetzF, SohnC, BeckhoveP, DomschkeC. B cell-regulated immune responses in tumour models and cancer patients. OncoImmunology. 2013;2(7):25443. doi:10.4161/onci.25443
  • LindauD, GielenP, KroesenM, WesselingP, AdemaGJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138(2):105–115. doi:10.1111/imm.2013.138.issue-223216602
  • Ostrand-RosenbergS, SinhaP, BeuryDW, ClementsVK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumour-induced immune suppression. Semin Cancer Biol. 2012;22(4):275–281. doi:10.1016/j.semcancer.2012.01.01122313874
  • LandskronG, de La FuenteM, ThuwajitP, ThuwajitC, HermosoMA. Chronic inflammation and cytokines in the tumour microenvironment. J Immunol Res. 2014;14:1–19. doi:10.1155/2014/149185
  • BronteV, ZanovelloP. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5:641–654. doi:10.1038/nri166816056256
  • GallinaG, DolcettiL, SerafiniP, et al. Tumours induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clinl Investig. 2006;116:2777–2790. doi:10.1172/JCI28828
  • RodriguezPC, OchoaAC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222:180–191. doi:10.1111/j.1600-065X.2008.00608.x18364002
  • Rodr´ıguezPC, OchoaAC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222(1):180–191. doi:10.1111/j.1600-065X.2008.00608.x18364002
  • BakSP, AlonsoA, TurkMJ, BerwinB. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol. 2008;46(2):258–268. doi:10.1016/j.molimm.2008.08.26618824264
  • ChangCI, LiaoJC, KuoL. Macrophage arginase promotes tumour cell growth and suppresses nitric oxidemediated tumour cytotoxicity. Cancer Res. 2001;61(3):1100–1106.11221839
  • WyckoffJB, WangY, LinEY, et al. Direct visualization of macrophage-assisted tumour cell intravasation in mammary tumours. Cancer Res. 2007;67:2649–2656. doi:10.1158/0008-5472.CAN-06-182317363585
  • HagemannT, WilsonJ, BurkeF, et al. Ovarian cancer cells polarize macrophages toward a tumour-associated phenotype. J Immunol. 2006;176(8):5023–5032. doi:10.4049/jimmunol.176.8.502316585599
  • GiraudoE, InoueM, HanahanD. An amino-bisphosphonate targets MMP-9—expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clinl Investig. 2004;114(5):623–633. doi:10.1172/JCI200422087
  • KrecickiT, Zalesska-KrecickaM, JelenM, SzkudlarekT, HorobiowskaM. Expression of type IV collagen and matrix metalloproteinase-2 (type IV collagenase) in relation to nodal status in laryngeal cancer. Clin Otolaryngol Allied Sci. 2001;26(6):469–472. doi:10.1046/j.0307-7772.2001.00503.x11843925
  • MakitieT, SummanenP, TarkkanenA, KivelT. Tumour-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42(7):1414–1421.11381040
  • NishieA, OnoM, ShonoT, et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res. 1999;5(5):1107–1113.10353745
  • KoideN, NishioA, SatoT, SugiyamaA, MiyagawaSI. Significance of macrophage chemoattractant protein1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol. 2004;99(9):1667–1674. doi:10.1111/j.1572-0241.2004.30733.x15330899
  • HanadaT, NakagawaM, EmotoA, NomuraT, NasuN, NomuraY. Prognostic value of tumour-associated macrophage count in human bladder cancer. Int J Urol. 2000;7(7):263–269. doi:10.1046/j.1442-2042.2000.00190.x10910229
  • LissbrantIF, StattinP, WikstromP, DamberJE, EgevadL, BerghA. Tumour associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000;17(3):445–451. doi:10.3892/ijo.17.3.44510938382
  • LeekRD, LewisCE, WhitehouseR, GreenallM, ClarkeJ, HarrisAL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996;56(20):4625–4629.8840975
  • GuoQ, LiJ, LinH. Effect and molecular mechanisms of traditional Chinese medicine on regulating tumour immunosuppressive microenvironment. Biomed Res Int. 2015;10:1–12.
  • LiuCY, XuJY, ShiXY, et al. M2-polarized tumour-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig. 2013;93:844–854. doi:10.1038/labinvest.2013.6923752129
  • RaviJ, ElbazM, WaniNA, NasserMW, GanjuRK. Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway. Mol Carcinog. 2016;55:2063–2076. doi:10.1002/mc.v55.1226741322
  • SchoppmannSF. Lymphangiogenesis, inflammation and metastasis. Anticancer Res. 2005;25(6):4503–4511.16334134
  • LinX, YiZ, DiaoJ, et al. ShaoYao decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelial-mesenchymal transition. J Transl Med. 2014;12(1):105. doi:10.1186/1479-5876-12-10524766737
  • LamW, JiangZ, GuanF, et al. PHY906 (KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumour activity of Sorafenib by changing the tumour microenvironment. Sci Rep. 2015;5:9384. doi:10.1038/srep0938425819872
  • WangB, ZhengX, LiuJ, et al. Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumour-infiltrating M2 macrophages. J Pharmacol Sci. 2018;137:290–298. doi:10.1016/j.jphs.2018.07.00730098910
  • LiH, HuangN, ZhuW, et al. Modulation the crosstalk between tumourassociated macrophages and non-small cell lung cancer to inhibit tumour migration and invasion by ginsenoside Rh2. BMC Cancer. 2018;18(579). doi:10.1186/s12885-018-4242-8
  • LinJ, LiQ, ChenH, LinH, LaiZ, PengJ. Hedyotis diffusa Willd. extract suppresses proliferation and induces apoptosis via IL-6-inducible STAT3 pathway inactivation in human colorectal cancer cells. Oncol Lett. 2015;9:1962–1970. doi:10.3892/ol.2015.295625789077
  • LiuJ, ZhangJ, HuangL, ZhuX, ChenW, Hu.P. XuefuZhuyu Tang exerts antitumour effects by inhibiting glioma cell metastasis and invasion via regulating tumour microenvironment. Onco Targets Ther. 2016;9:3603–3612. doi:10.2147/OTT.S10410827382298
  • OstuniR, KratochvillF, MurrayPJ, NatoliG. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 2015;36:229–239. doi:10.1016/j.it.2015.02.00425770924
  • KessenbrockK, WangCY, WerbZ. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 2015;44–46:184–190. doi:10.1016/j.matbio.2015.01.022
  • BrownGT, MurrayGI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2015;237(3):273–281. doi:10.1002/path.458626174849
  • ComunanzaV, CoràD, OrsoF, et al. VEGF blockade enhances the antitumour effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9(2):219–237. doi:10.15252/emmm.20150577427974353
  • GuoQ, JieL, LinH. Effect and molecular mechanisms of traditional Chinese medicine on regulating tumour immunosuppressive microenvironment. Biomed Res Int. 2015;261:1–12.
  • LiY-L, SunB-G, XiangT, ChenZ-X, ZhangS-J. Effect of invigorating spleen and detoxification decoction on MHCI/MHCII in spleen-deficiency liver cancer rats survival. J Chin Med Mater. 2014;37(3):456–462.
  • Villa-MoralesM, Fernandez-PiquerasJ. Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):85–101. doi:10.1517/14728222.2011.62893722239437
  • ChangY, ZhaoY, ZhanH, WeiX, LiuT, ZhengB. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells. Tumour Biol. 2014;35(2):1075–1082. doi:10.1007/s13277-013-1143-y24006225
  • PanHC, LaiDW, LanKH, et al. Honokiol thwarts gastric tumour growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis. 2013;34(11):2568–2579. doi:10.1093/carcin/bgt24323828905
  • LiuC-P, ZhangX, TanQ-L, et al. NF-κB pathways are involved in M1 polarization of RAW 264.7 macrophage by polyporus polysaccharide in the tumour microenvironment. PLoS One. 2017;12(11):317.
  • XuF, CuiW, ZhaoZ, et al. Targeting tumour microenvironment: effects of Chinese herbal formulae on macrophage-mediated lung cancer in mice. Evid Based Complement Alternat Med. 2017;2017:716–718. doi:10.1155/2017/7187168
  • EltonTS, SelemonH, EltonSM, ParinandiNL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12. doi:10.1016/j.gene.2012.12.00923246696
  • ChangCP, SuYC, LeePH, LeiHY. Targeting NF-kB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy. 2013;9:619–621. doi:10.4161/auto.2354623360732
  • SaccaniA, SchioppaT, PortaC, et al. p50 nuclear factor-kappaB overexpression in tumour-associated macrophages inhibits M1 inflammatory responses and antitumour resistance. Cancer Res. 2006;66:11432–11440. doi:10.1158/0008-5472.CAN-06-186717145890
  • PiaoM, CaoH, HeN, et al. Berberine inhibits intestinal polyps growth in Apc (min/+) mice via regulation of macrophage polarization. Evid Based Complement Alternat Med. 2016;10:1–8. doi:10.1155/2016/5137505
  • DandanL, ZhangY, LiuK, et al. Berberine inhibits colitis-associated tumourigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumour cell growth. Lab Investig. 2017;97:1343–1353. doi:10.1038/labinvest.2017.7128759012
  • ChengS-E, LeeI-T, Lin-C-C, WuW-L, HsiaoL-D, YangC-M. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptordependent STAT3 activation. PLoS One. 2013;8(1):542–547.
  • KimHG, KimYR, ParkJH, et al. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol. 2015;89(11):2039–2050. doi:10.1007/s00204-014-1359-725199686