115
Views
11
CrossRef citations to date
0
Altmetric
Original Research

AZD4547 Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation: The Role of FGFR1 in Renal Tubular Epithelial Cells

, , , , , & show all
Pages 833-844 | Published online: 26 Feb 2020

References

  • DellepianeS, MarengoM, CantaluppiV. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit Care. 2016;20:61. doi:10.1186/s13054-016-1219-326976392
  • VaaraST, PettiläV, KaukonenK-M, et al. The attributable mortality of acute kidney injury. Crit Care Med. 2014;42(4):878. doi:10.1097/CCM.000000000000004524201174
  • HartyJ. Prevention and management of acute kidney injury. Ulster Med J. 2014;83(3):149.25484464
  • PlatakiM, KashaniK, CabellogarzaJ, et al. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clin J Am Soc Nephrol. 2011;6(7):1744. doi:10.2215/CJN.0548061021734090
  • ThieleRH, IsbellJM, RosnerMH. AKI associated with cardiac surgery. Clin J Am Soc Nephrol. 2015;10(3):500. doi:10.2215/CJN.0783081425376763
  • LiPKT, BurdmannEA, MehtaRL, World Kidney Day Steering C. Acute kidney injury: global health alert. Transplantation. 2013;95(5):653–657. doi:10.1097/TP.0b013e31828848bc23503499
  • UchinoS, KellumJA, BellomoR, et al. Acute renal failure in critically Ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–818. doi:10.1001/jama.294.7.81316106006
  • TuckerJA, KleinT, BreedJ, et al. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure. 2014;22(12):1764–1774. doi:10.1016/j.str.2014.09.01925465127
  • BaeldeHJ, EikmansM, DoranPP, LappinDW, de HeerE, BruijnJA. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis. 2004;43(4):636–650. doi:10.1053/j.ajkd.2003.12.02815042541
  • LiangG, SongL, ChenZ, et al. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int. 2018;93(1):95–109. doi:10.1016/j.kint.2017.05.01328750927
  • RossiniM, CheunsuchonB, DonnertE, et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int. 2005;68(6):2621–2628. doi:10.1111/j.1523-1755.2005.00734.x16316338
  • LouD, HanJ, ZhouL, et al. Fibroblast growth factor receptor 1 antagonism attenuates lipopolysaccharide-induced activation of hepatic stellate cells via suppressing inflammation. Exp Ther Med. 2018;16(4):2909–2916. doi:10.3892/etm.2018.658630250515
  • SchneiderMK, IoanasHI, XandryJ, RudinM. An in vivo wound healing model for the characterization of the angiogenic process and its modulation by pharmacological interventions. Sci Rep. 2019;9(1):6004.30979919
  • RanFA, HsuPD, WrightJ, AgarwalaV, ScottDA, ZhangF. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–2308. doi:10.1038/nprot.2013.14324157548
  • ChenT, LuoW, WuG, et al. A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages. Toxicol Appl Pharmacol. 2019;370:44–55. doi:10.1016/j.taap.2019.03.01230880215
  • YouS, QianJ, WuG, et al. Schizandrin B attenuates angiotensin II induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-kappaB activation. Phytomedicine. 2019;62:152955. doi:10.1016/j.phymed.2019.15295531146168
  • HanJ, YeS, ZouC, et al. Angiotensin II causes biphasic STAT3 activation through TLR4 to initiate cardiac remodeling. Hypertension. 2018;72(6):1301–1311. doi:10.1161/HYPERTENSIONAHA.118.1186030571233
  • Amoah-AprakuB, ChandlerLJ, HarrisonJK, TangSS, IngelfingerJR, GuzmanNJ. NF-kappa B and transcriptional control of renal epithelial-inducible nitric oxide synthase. Kidney Int. 1995;48(3):674–682. doi:10.1038/ki.1995.3377474651
  • WangY, RanganGK, GoodwinB, TayYC, HarrisDC. Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney Int. 2000;57(5):2011–2022. doi:10.1046/j.1523-1755.2000.00051.x10792620
  • WangC, DengL, HongM, AkkarajuGR, InoueJ, ChenZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–351. doi:10.1038/3508559711460167
  • AkcayA, NguyenQ, EdelsteinCL. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009;2009:12.
  • FuruichiK, KanekoS, WadaT. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol. 2009;13(1):9–14. doi:10.1007/s10157-008-0119-519085040
  • GomezH, InceC, De BackerD, et al. A unified theory of sepsis- induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11. doi:10.1097/SHK.0000000000000052
  • WoodsJS, Dieguez-AcunaFJ, EllisME, KushleikaJ, SimmondsPL. Attenuation of nuclear factor kappa B (NF-kappaB) promotes apoptosis of kidney epithelial cells: a potential mechanism of mercury-induced nephrotoxicity. Environ Health Perspect. 2002;110(Suppl 5):819–822. doi:10.1289/ehp.02110s581912426138
  • HuangY, WangF, LiH, et al. Inhibition of fibroblast growth factor receptor by AZD4547 protects against inflammation in septic mice. Inflammation. 2019;42:1957–1967. doi:10.1007/s10753-019-01056-431321583
  • LiuS, LutzJ, ChangJ, LiuD, HeemannU, BaumannM. TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol (Oxf). 2010;199(3):339–346. doi:10.1111/j.1748-1716.2010.02097.x20136795
  • MaJ, LiYT, ZhangSX, FuSZ, YeXZ. MiR-590-3p attenuates acute kidney injury by inhibiting tumor necrosis factor receptor-associated factor 6 in septic mice. Inflammation. 2019;42(2):637–649. doi:10.1007/s10753-018-0921-530392071