149
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Discovery of a Novel Benzenesulfonamide Analogue That Inhibits Proliferation and Metastasis Against Ovarian Cancer OVCAR-8 Cells

, , , , , & show all
Pages 207-216 | Published online: 15 Jan 2020

References

  • XiongD-D, QinY, XuW-Q, et al. A network pharmacology-based analysis of multi-target, multi-pathway, multi-compound treatment for ovarian serous cystadenocarcinoma. Clin Drug Investig. 2018;38:909–925. doi:10.1007/s40261-018-0683-8
  • KwonJS, TinkerAV, HanleyGE, et al. BRCA mutation testing for first-degree relatives of women with high-grade serous ovarian cancer. Gynecol Oncol. 2019;152:459–464. doi:10.1016/j.ygyno.2018.10.01430876489
  • MurakamiR, MatsumuraN, MichimaeH, et al. The mesenchymal transition subtype more responsive to dose dense taxane chemotherapy combined with carboplatin than to conventional taxane and carboplatin chemotherapy in high grade serous ovarian carcinoma: A survey of Japanese Gynecologic Oncology Group study (JGOG3016A1). Gynecol Oncol. 2019;153:312–319. doi:10.1016/j.ygyno.2019.02.01030853361
  • LisioM-A, FuL, GoyenecheA, GaoZ-H, TelleriaC. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 2019;20:952. doi:10.3390/ijms20040952
  • WuT-Y, ChoT-Y, LuC-K, LiouJ-P, ChenM-C. Identification of 7-(4ʹ-Cyanophenyl)indoline-1-benzenesulfonamide as a mitotic inhibitor to induce apoptotic cell death and inhibit autophagy in human colorectal cancer cells. Sci Rep. 2017;7:12406. doi:10.1038/s41598-017-12795-528963527
  • GhorabMM, AlsaidMS, SolimanAM, RagabFA. VEGFR-2 inhibitors and apoptosis inducers: synthesis and molecular design of new benzo[g]quinazolin bearing benzenesulfonamide moiety. J Enzyme Inhib Med Chem. 2017;32:893–907. doi:10.1080/14756366.2017.133465028661197
  • YangJ, YangS, ZhouS, et al. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. Eur J Med Chem. 2016;122:488–496. doi:10.1016/j.ejmech.2016.07.00227423028
  • Al-ObeedO, Vaali-MohammedM-A, EldehnaWM, et al. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2-STAT3 pathway. Onco Targets Ther. 2018;11:3313–3322. doi:10.2147/OTT.S14810829892198
  • ŻołnowskaB, SławińskiJ, BrzozowskiZ, et al. Synthesis, molecular structure, anticancer activity, and QSAR Study of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamide derivatives. Int J Mol Sci. 2018;19:1482. doi:10.3390/ijms19051482
  • QiuQ, ZhuJ, ChenQ, et al. Discovery of aromatic amides with triazole-core as potent reversal agents against P-glycoprotein-mediated multidrug resistance. Bioorg Chem. 2019;90:103083. doi:10.1016/j.bioorg.2019.10308331255991
  • GregorićT, SedićM, GrbčićP, et al. Novel pyrimidine-2,4-dione–1,2,3-triazole and furo[2,3-d]pyrimidine-2-one–1,2,3-triazole hybrids as potential anti-cancer agents: synthesis, computational and X-ray analysis and biological evaluation. Eur J Med Chem. 2017;125:1247–1267. doi:10.1016/j.ejmech.2016.11.02827875779
  • GholampourM, RanjbarS, EdrakiN, MohabbatiM, FiruziO, KhoshneviszadehM. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg Chem. 2019;88:102967. doi:10.1016/j.bioorg.2019.10296731078767
  • LuG-Q, LiX-Y, MohamedOK, WangD, MengF-H. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem. 2019;171:282–296. doi:10.1016/j.ejmech.2019.03.04730927565
  • AshwiniN, GargM, MohanCD, et al. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation. Bioorg Med Chem. 2015;23:6157–6165. doi:10.1016/j.bmc.2015.07.06926299825
  • FuD-J, LiuJ-F, ZhaoR-H, LiJ-H, ZhangS-Y, ZhangY-B. Design and antiproliferative evaluation of novel sulfanilamide derivatives as potential tubulin polymerization inhibitors. Molecules. 2017;22:1470. doi:10.3390/molecules22091470
  • WebbPM, JordanSJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14. doi:10.1016/j.bpobgyn.2016.08.00627743768
  • PrasadB, Lakshma NayakV, SrikanthPS, et al. Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. Bioorg Chem. 2019;83:535–548. doi:10.1016/j.bioorg.2018.11.00230472555
  • BistrovićA, HarejA, GrbčićP, et al. Synthesis and anti-proliferative effects of mono- and bis-purinomimetics targeting kinases. Int J Mol Sci. 2017;18:2292. doi:10.3390/ijms18112292
  • SinghK, SonaC, OjhaV, et al. Identification of dual role of piperazine-linked phenyl cyclopropyl methanone as positive allosteric modulator of 5-HT2C and negative allosteric modulator of 5-HT2B receptors. Eur J Med Chem. 2018;164:499–516.30622024
  • LuoK, BaoY, LiuF, et al. Synthesis and biological evaluation of novel benzylidene-succinimide derivatives as noncytotoxic antiangiogenic inhibitors with anticolorectal cancer activity in vivo. Eur J Med Chem. 2019;179:805–827. doi:10.1016/j.ejmech.2019.06.09431295714
  • RuscettiM, QuachB, DadashianEL, MulhollandDJ, TrackingWH. And functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis. Cancer Res. 2015;75:2749–2759. doi:10.1158/0008-5472.CAN-14-347625948589
  • ChenT, YouY, JiangH, WangZZ. Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232:3261–3272. doi:10.1002/jcp.v232.1228079253
  • JacquesBE, MontgomeryIW, UribeH, et al. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Dev Neurobiol. 2014;74:438–456. doi:10.1002/dneu.2213424115534
  • ObianomON, AiY, LiY, et al. Triazole-based inhibitors of the Wnt/β-Catenin signaling pathway improve glucose and lipid metabolisms in diet-induced obese mice. J Med Chem. 2019;62:727–741. doi:10.1021/acs.jmedchem.8b0140830605343
  • EgashiraI, Takahashi-YanagaF, NishidaR, et al. Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci. 2017;108:108–115. doi:10.1111/cas.2017.108.issue-127761963
  • WalzA, UgolkovA, ChandraS, et al. Molecular pathways: revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin Cancer Res. 2017;23:1891–1897. doi:10.1158/1078-0432.CCR-15-224028053024
  • MancinelliR, CarpinoG, PetrungaroS, et al. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev. 2017;2017:4629495. doi:10.1155/2017/462949529379583
  • PardoM, AbrialE, JopeRS, BeurelE. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav. 2016;15:348–355. doi:10.1111/gbb.2016.15.issue-326749572