131
Views
19
CrossRef citations to date
0
Altmetric
Original Research

Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex

& ORCID Icon
Pages 1583-1592 | Published online: 23 Apr 2020

References

  • ReckM, RabeKF, LongoDL. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377(9):849–861. doi:10.1056/NEJMra170341328854088
  • ReckM, HeigenerDF, MokT, SoriaJC, RabeKF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382(9893):709–719. doi:10.1016/S0140-6736(13)61502-023972814
  • ChenZ, FillmoreCM, HammermanPS, KimCF, WongKK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–546. doi:10.1038/nrc377525056707
  • HerbstRS, MorgenszternD, BoshoffC. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–454. doi:10.1038/nature2518329364287
  • VariyaBC, BakraniaAK, MadanP, PatelSS. Acute and 28-days repeated dose sub-acute toxicity study of gallic acid in albino mice. Regul Toxicol Pharmacol. 2019;101:71–78. doi:10.1016/j.yrtph.2018.11.01030465803
  • JinL, PiaoZH, SunS, et al. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascul Pharmacol. 2017;99:74–82. doi:10.1016/j.vph.2017.10.00729097327
  • NamB, RhoJK, ShinDM, SonJ. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover. Bioorg Med Chem Lett. 2016;26(19):4571–4575. doi:10.1016/j.bmcl.2016.08.08327597244
  • BertottiA, PappE, JonesS, et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 2015;526(7572):263–267. doi:10.1038/nature1496926416732
  • YeQH, ZhuWW, ZhangJB, et al. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30(3):444–458. doi:10.1016/j.ccell.2016.07.01727569582
  • YochumZA, CadesJ, WangH, et al. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene. 2019;38(5):656–670. doi:10.1038/s41388-018-0482-y30171258
  • RenoirJM, MarsaudV, LazennecG. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol. 2013;85(4):449–465. doi:10.1016/j.bcp.2012.10.01823103568
  • MannM, CortezV, VadlamudiR. PELP1 oncogenic functions involve CARM1 regulation. Carcinogenesis. 2013;34(7):1468–1475. doi:10.1093/carcin/bgt09123486015
  • WangD, HuY. Long non-coding RNA PVT1 competitively binds MicroRNA-424-5p to regulate CARM1 in radiosensitivity of non-small-cell lung cancer. Mol Ther Nucleic Acids. 2019;16:130–140. doi:10.1016/j.omtn.2018.12.00630861415
  • ManavathiB, NairSS, WangRA, KumarR, VadlamudiRK. Proline-, glutamic acid-, and leucine-rich protein-1 is essential in growth factor regulation of signal transducers and activators of transcription 3 activation. Cancer Res. 2005;65(13):5571–5577. doi:10.1158/0008-5472.CAN-04-466415994929
  • WoodK, HensingT, MalikR, SalgiaR. Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA Oncol. 2016;2(6):805–812. doi:10.1001/jamaoncol.2016.040527100819
  • ChoubeyS, GoyalS, VarugheseLR, KumarV, SharmaAK, BeniwalV. Probing gallic acid for its broad spectrum applications. Mini Rev Med Chem. 2018;18(15):1283–1293. doi:10.2174/138955751866618033011401029600764
  • Demiroglu-ZergerogluA, CandemirG, TurhanlarE, SagirF, AyvaliN. EGFR-dependent signalling reduced and p38 dependent apoptosis required by gallic acid in malignant mesothelioma cells. Biomed Pharmacother. 2016;84:2000–2007. doi:10.1016/j.biopha.2016.11.00527847212
  • ChenYJ, LinKN, JhangLM, HuangCH, LeeYC, ChangLS. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem Biol Interact. 2016;252:131–140. doi:10.1016/j.cbi.2016.04.02527087131
  • ArteagaCL, EngelmanJA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303. doi:10.1016/j.ccr.2014.02.02524651011
  • RoskoskiR Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019;139:395–411. doi:10.1016/j.phrs.2018.11.01430500458
  • CuylenS, BlaukopfC, PolitiAZ, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535(7611):308–312. doi:10.1038/nature1861027362226
  • LeungSCY, NielsenTO, ZabagloLA, et al. Analytical validation of a standardised scoring protocol for Ki67 immunohistochemistry on breast cancer excision whole sections: an international multicentre collaboration. Histopathology. 2019;75(2):225–235. doi:10.1111/his.1388031017314
  • FuQ, FuTM, CruzAC, et al. Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol Cell. 2016;61(4):602–613. doi:10.1016/j.molcel.2016.01.00926853147
  • WangM, SuP. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: an update. Syst Biol Reprod Med. 2018;64(2):93–102. doi:10.1080/19396368.2017.142204629299971
  • ChuangCY, LiuHC, WuLC, ChenCY, ChangJT, HsuSL. Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway. J Agric Food Chem. 2010;58(5):2943–2951. doi:10.1021/jf904326520151649
  • LimCS, AlkonDL. Inhibition of coactivator-associated arginine methyltransferase 1 modulates dendritic arborization and spine maturation of cultured hippocampal neurons. J Biol Chem. 2017;292(15):6402–6413. doi:10.1074/jbc.M117.77561928264928
  • HabashyHO, RakhaEA, EllisIO, PoweDG. The oestrogen receptor coactivator CARM1 has an oncogenic effect and is associated with poor prognosis in breast cancer. Breast Cancer Res Treat. 2013;140(2):307–316. doi:10.1007/s10549-013-2614-y23887673
  • WangL, ZhaoZ, MeyerMB, et al. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell. 2014;25(1):21–36. doi:10.1016/j.ccr.2013.12.00724434208
  • SlowikowskiBK, GaleckiB, DyszkiewiczW, JagodzinskiPP. Increased expression of proline-, glutamic acid- and leucine-rich protein PELP1 in non-small cell lung cancer. Biomed Pharmacother. 2015;73:97–101. doi:10.1016/j.biopha.2015.05.01526211588
  • YouBR, ParkWH. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol in Vitro. 2010;24(5):1356–1362. doi:10.1016/j.tiv.2010.04.00920417267
  • MauryaDK, NandakumarN, DevasagayamTP. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2011;48(1):85–90. doi:10.3164/jcbn.11-004FR21297918
  • JiBC, HsuWH, YangJS, et al. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem. 2009;57(16):7596–7604. doi:10.1021/jf901308p20349925