491
Views
114
CrossRef citations to date
0
Altmetric
Original Research

Protective Effects of Chlorogenic Acid on Cerebral Ischemia/Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway

, , &
Pages 51-60 | Published online: 07 Jan 2020

References

  • KhoshnamSE, WinlowW, FarboodY, MoghaddamHF, FarzanehM. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke. 2017;19:166–187. doi:10.5853/jos.2016.0136828480877
  • JiangD, SunX, WangS, ManH. Upregulation of miR-874-3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother. 2019;117:108941. doi:10.1016/j.biopha.2019.10894131200256
  • WangJ, ChenT, ShanG. miR-148b regulates proliferation and differentiation of neural stem cells via Wnt/β-catenin signaling in rat ischemic stroke model. Front Cell Neurosci. 2017;11:329. doi:10.3389/fncel.2017.0032929104534
  • EryildizES, OzdemirAO. Factors associated with early recovery after intravenous thrombolytic therapy in acute ischemic stroke. Noro Psikiyatri Arsivi. 2018;55:80–83. doi:10.29399/npa.2266430042646
  • Petrovic-DjergovicD, GoonewardenaSN, PinskyDJ. Inflammatory disequilibrium in stroke. Circ Res. 2016;119:142–158. doi:10.1161/CIRCRESAHA.116.30802227340273
  • TaramF, WinterAN, LinsemanDA. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons. Brain Res. 2016;1648:69–80. doi:10.1016/j.brainres.2016.07.02827444557
  • ItoH, SunXL, WatanabeM, OkamotoM, HatanoT. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci Biotechnol Biochem. 2008;72:885–888. doi:10.1271/bbb.7067018323641
  • YangL, WangN, ZhengG. Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting amyloid beta aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett. 2018;13:303. doi:10.1186/s11671-018-2720-130269259
  • TsangMS, JiaoD, ChanBC, et al. Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules. 2016;21:519. doi:10.3390/molecules2104051927104513
  • CropleyV, CroftR, SilberB, et al. Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology (Berl). 2012;219:737–749. doi:10.1007/s00213-011-2395-021773723
  • ShenW, QiR, ZhangJ, et al. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull. 2012;88:487–494. doi:10.1016/j.brainresbull.2012.04.01022580132
  • HanJ, MiyamaeY, ShigemoriH, IsodaH. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience. 2010;169:1039–1045. doi:10.1016/j.neuroscience.2010.05.04920570715
  • LapchakPA. The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: synergism with tissue plasminogen activator. Exp Neurol. 2007;205:407–413. doi:10.1016/j.expneurol.2007.02.01717439814
  • SinghSS, RaiSN, BirlaH, et al. Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol. 2018;9:757. doi:10.3389/fphar.2018.0075730127737
  • WuJ, ChenY, YuS, et al. Neuroprotective effects of sulfiredoxin-1 during cerebral ischemia/reperfusion oxidative stress injury in rats. Brain Res Bull. 2017;132:99–108. doi:10.1016/j.brainresbull.2017.05.01228552673
  • XuX, ZhangL, YeX, et al. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res. 2018;67:57–65. doi:10.1007/s00011-017-1095-628956063
  • ChenL, CaoJ, CaoD, et al. Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebral ischemia/reperfusion injury: an in vivo and in vitro study. Life Sci. 2019;235:116553. doi:10.1016/j.lfs.2019.11655331185237
  • YooJM, LeeBD, SokDE, MaJY, KimMR. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol. 2017;11:592–599. doi:10.1016/j.redox.2016.12.03428110215
  • LouY, GuoZ, ZhuY, et al. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J Exp Clin Cancer Res. 2019;38:242. doi:10.1186/s13046-019-1255-331174565
  • WangX, SaudSM, ZhangX, LiW, HuaB. Protective effect of Shaoyao Decoction against colorectal cancer via the Keap1-Nrf2-ARE signaling pathway. J Ethnopharmacol. 2019;241:111981. doi:10.1016/j.jep.2019.11198131146002
  • SongJ, ZhouN, MaW, et al. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior. Food Funct. 2019;10:2947–2957. doi:10.1039/C8FO02599A31073553
  • SunJ, YuX, HuangpuH, YaoF. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed Pharmacother. 2019;109:254–261. doi:10.1016/j.biopha.2018.09.00230396083
  • GhanbarabadiM, FalanjiF, RadA, et al. Neuroprotective effects of clavulanic acid following permanent bilateral common carotid artery occlusion in rats. Drug Dev Res. 2019. doi:10.1002/ddr.21595
  • LongaEZ, WeinsteinPR, CarlsonS, CumminsR. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91. doi:10.1161/01.STR.20.1.842643202
  • HuaF, MaJ, HaT, et al. Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res. 2009;1262:100–108. doi:10.1016/j.brainres.2009.01.01819401158
  • ZhaoY, LiD, ZhuZ, SunY. Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke. Rejuvenation Res. 2019. doi:10.1089/rej.2019.2230
  • ZuoL, FengQ, HanY, et al. Therapeutic effect on experimental acute cerebral infarction is enhanced after nanoceria labeling of human umbilical cord mesenchymal stem cells. Ther Adv Neurol Disord. 2019;12:1756286419859725. doi:10.1177/175628641985972531431809
  • ZhuZ, LiJ, ZhangX. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med. 2019;19:111. doi:10.1186/s12906-019-2526-431146723
  • MathersCD, LoncarD. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442. doi:10.1371/journal.pmed.003044217132052
  • KalariaRN, AkinyemiR, IharaM. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862:915–925. doi:10.1016/j.bbadis.2016.01.01526806700
  • WuMY, YiangGT, LiaoWT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46:1650–1667. doi:10.1159/00048924129694958
  • YaoJ, PengS. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. Biofactors. 2019;45:616–626. doi:10.1002/biof.150730951611
  • RebaiO, BelkhirM, Sanchez-GomezMV, MatuteC, FattouchS, AmriM. Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem Res. 2017;42:3559–3572. doi:10.1007/s11064-017-2403-928948515
  • HeitmanE, IngramDK. Cognitive and neuroprotective effects of chlorogenic acid. Nutr Neurosci. 2017;20:32–39. doi:10.1179/1476830514Y.000000014625130715
  • ShanS, TianL, FangR. Chlorogenic acid exerts beneficial effects in 6-hydroxydopamine-induced neurotoxicity by inhibition of endoplasmic reticulum stress. Med Sci Monit. 2019;25:453–459. doi:10.12659/MSM.91116630645211
  • KumarG, MukherjeeS, PaliwalP, et al. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn Schmiedebergs Arch Pharmacol. 2019;392:1293–1309. doi:10.1007/s00210-019-01670-x31190087
  • JiangLJ, ZhangSM, LiCW, TangJY, CheFY, LuYC. Roles of the Nrf2/HO-1 pathway in the anti-oxidative stress response to ischemia-reperfusion brain injury in rats. Eur Rev Med Pharmacol Sci. 2017;21:1532–1540.28429353
  • WuG, ZhuL, YuanX, et al. Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway. Antioxid Redox Signal. 2017;27:754–768. doi:10.1089/ars.2016.688528186440
  • TanakaN, IkedaY, OhtaY, et al. Expression of Keap1-Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res. 2011;1370:246–253. doi:10.1016/j.brainres.2010.11.01021075092
  • LeeJY, ParkJM, HongJA, LeeDC, ImJA, LeeJW. Serum ferritin is differentially associated with anti-oxidative status and insulin resistance in healthy obese and non-obese women. Korean J Fam Med. 2012;33:205–210. doi:10.4082/kjfm.2012.33.4.20522916322
  • SiegelD, GustafsonDL, DehnDL, et al. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol. 2004;65:1238–1247. doi:10.1124/mol.65.5.123815102952
  • JinC, FuW-L, ZhangDD, et al. The protective role of IL-1Ra on intestinal ischemia reperfusion injury by anti-oxidative stress via Nrf2/HO-1 pathway in rat. Biomed J. 2019;42:36–45. doi:10.1016/j.bj.2018.11.00130987703