194
Views
48
CrossRef citations to date
0
Altmetric
Original Research

Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 129-143 | Published online: 13 Jan 2020

References

  • SantopaoloF, LenciI, BosaA, AngelicoM, MilanaM, BaiocchiL. Domino liver transplantation: where are we now? Rev Recent Clin Trials. 2019;14:183–188. doi:10.2174/157488711466619032012382430894112
  • HechtEM, KambadakoneA, GriesemerAD, et al. Living donor liver transplantation: overview, imaging technique, and diagnostic considerations. AJR Am J Roentgenol. 2019;1–11.
  • MarshallK, JinJ, AtkinsonC, et al. Natural immunoglobulin M initiates an inflammatory response important for both hepatic ischemia reperfusion injury and regeneration in mice. Hepatology. 2017;67:721–735.28880403
  • AbeY, HinesIN, ZibariG, et al. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med. 2009;46(1):1–7. doi:10.1016/j.freeradbiomed.2008.09.02918955130
  • KurokawaT, NonamiT, HaradaA, NakaoA, TakagiH. Mechanism and prevention of ischemia-reperfusion injury of the liver. Semin Surg Oncol. 1996;12(3):179–182. doi:10.1002/(ISSN)1098-23888727607
  • TakenakaH. Genesis and mechanism of ischemia-reperfusion injuries. Seikagaku. 2000;72(12):1433–1436.11201107
  • LiH, XiaZ, ChenY, QiD, ZhengH. Mechanism and therapies of oxidative stress-mediated cell death in ischemia reperfusion injury. Oxid Med Cell Longev. 2018;2018:2910643.30034574
  • KangKJ. Mechanism of hepatic ischemia/reperfusion injury and protection against reperfusion injury. Transplant Proc. 2002;34(7):2659–2661. doi:10.1016/S0041-1345(02)03465-612431565
  • KinarivalaN, SuhJH, BotrosM, WebbP, TrippierPC. Pharmacophore elucidation of phosphoiodyn A - potent and selective peroxisome proliferator-activated receptor beta/delta agonists with neuroprotective activity. Bioorg Med Chem Lett. 2016;26(8):1889–1893. doi:10.1016/j.bmcl.2016.03.02826988304
  • ZolezziJM, Silva-AlvarezC, OrdenesD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma and PPARalpha agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One. 2013;8(5):e64019. doi:10.1371/journal.pone.006401923675519
  • XiaP, PanY, ZhangF, et al. Pioglitazone confers neuroprotection against ischemia-induced pyroptosis due to its inhibitory effects on HMGB-1/RAGE and Rac1/ROS pathway by activating PPAR. Cell Physiol Biochem. 2018;45(6):2351–2368. doi:10.1159/00048818329554649
  • LinaresI, FarrokhiK, EcheverriJ, et al. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS One. 2018;13(4):e0195212. doi:10.1371/journal.pone.019521229617419
  • Elias-MiroM, Jimenez-CastroMB, Mendes-BrazM, Casillas-RamirezA, PeraltaC. The current knowledge of the role of PPAR in hepatic ischemia-reperfusion injury. PPAR Res. 2012;2012:802384. doi:10.1155/2012/80238422675337
  • MorrisonA, LiJ. PPAR-gamma and AMPK–advantageous targets for myocardial ischemia/reperfusion therapy. Biochem Pharmacol. 2011;82(3):195–200. doi:10.1016/j.bcp.2011.04.00421536015
  • ZhaoYB, ZhaoJ, ZhangLJ, et al. MicroRNA-370 protects against myocardial ischemia/reperfusion injury in mice following sevoflurane anesthetic preconditioning through PLIN5-dependent PPAR signaling pathway. Biomed Pharmacother. 2019;113:108697. doi:10.1016/j.biopha.2019.10869730856533
  • SinghAP, SinghN, PathakD, BediPMS. Estradiol attenuates ischemia reperfusion-induced acute kidney injury through PPAR-gamma stimulated eNOS activation in rats. Mol Cell Biochem. 2019;453(1–2):1–9. doi:10.1007/s11010-018-3427-430194582
  • WuXJ, SunXH, WangSW, ChenJL, BiYH, JiangDX. Mifepristone alleviates cerebral ischemia-reperfusion injury in rats by stimulating PPAR gamma. Eur Rev Med Pharmacol Sci. 2018;22(17):5688–5696. doi:10.26355/eurrev_201809_1583630229846
  • Al RouqF, El EterE. PPAR-gamma activator induces neuroprotection in hypercholesterolemic rats subjected to global cerebral ischemia/reperfusion injury: in vivo and in vitro inhibition of oxidative stress. Exp Gerontol. 2014;51:1–7. doi:10.1016/j.exger.2013.12.00824373843
  • El-SayyadSM, SoubhAA, AwadAS, El-AbharHS. Mangiferin protects against intestinal ischemia/reperfusion-induced liver injury: involvement of PPAR-gamma, GSK-3beta and Wnt/beta-catenin pathway. Eur J Pharmacol. 2017;809:80–86. doi:10.1016/j.ejphar.2017.05.02128506911
  • MoW, WangC, LiJ, et al. Fucosterol protects against concanavalin A-induced acute liver injury: focus on P38 MAPK/NF-kappaB pathway activity. Gastroenterol Res Pract. 2018;2018:2824139. doi:10.1155/2018/282413930116260
  • ClarkRB. The role of PPARs in inflammation and immunity. J Leukoc Biol. 2002;71(3):388–400.11867676
  • DegrelleSA, ShoaitoH, FournierT. New transcriptional reporters to quantify and monitor PPARgamma activity. PPAR Res. 2017;2017:6139107. doi:10.1155/2017/613910729225614
  • FengJ, ZhangQ, MoW, et al. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice. Drug Des Devel Ther. 2017;11:1989–2006. doi:10.2147/DDDT.S136792
  • LiJ, WangF, XiaY, et al. Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs. 2015;13(6):3368–3387. doi:10.3390/md1306336826023842
  • LiJ, ZhangQ, LiS, et al. The natural product fucoidan ameliorates hepatic ischemia-reperfusion injury in mice. Biomed Pharmacother. 2017;94:687–696. doi:10.1016/j.biopha.2017.07.10928797984
  • KimHS, LimHK, ChungMW, KimYC. Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J Ethnopharmacol. 2000;69(1):79–83. doi:10.1016/S0378-8741(99)00137-310661887
  • GaoXJ, GuoMY, ZhangZC, WangTC, CaoYG, ZhangNS. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-kappaB signaling pathways in a mouse model of LPS-induced mastitis. Inflammation. 2015;38(3):1142–1150. doi:10.1007/s10753-014-0079-825487780
  • KhanH, AminH, UllahA, et al. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxid Med Cell Longev. 2016;2016:1051925. doi:10.1155/2016/105192526998192
  • YangS, YuZ, WangL, et al. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. J Ethnopharmacol. 2017;200:147–155. doi:10.1016/j.jep.2017.02.01328192201
  • RoyVK, ChenkualL, GurusubramanianG. Protection of testis through antioxidant action of Mallotus roxburghianus in alloxan-induced diabetic rat model. J Ethnopharmacol. 2015;176:268–280. doi:10.1016/j.jep.2015.11.00626549273
  • LimHK, KimHS, ChoiHS, ChoiJ, KimSH, ChangMJ. Effects of bergenin, the major constituent of Mallotus japonicus against D-galactosamine-induced hepatotoxicity in rats. Pharmacology. 2001;63(2):71–75. doi:10.1159/00005611511490198
  • KaurR, KaurS. Evaluation of in vitro and in vivo antileishmanial potential of bergenin rich Bergenia ligulata (Wall.) Engl. root extract against visceral leishmaniasis in inbred BALB/c mice through immunomodulation. J Tradit Complement Med. 2018;8(1):251–260.29322016
  • WangK, LiYF, LvQ, LiXM, DaiY, WeiZF. Bergenin, acting as an agonist of PPARgamma, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-kappaB-mediated macrophage activation. Front Pharmacol. 2017;8:981.29375382
  • YunJ, LeeY, YunK, OhS. Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice. Arch Pharm Res. 2015;38(6):1248–1254. doi:10.1007/s12272-014-0534-y25542428
  • YuQ, WuL, LiuT, et al. Protective effects of levo-tetrahydropalmatine on hepatic ischemia/reperfusion injury are mediated by inhibition of the ERK/NF-kappaB pathway. Int Immunopharmacol. 2019;70:435–445. doi:10.1016/j.intimp.2019.02.02430856394
  • YangJ, KanM, WuGY. Bergenin ameliorates diabetic nephropathy in rats via suppressing renal inflammation and TGF-beta1-Smads pathway. Immunopharmacol Immunotoxicol. 2016;38(2):145–152. doi:10.3109/08923973.2016.114256026954391
  • FanaleD, AmodeoV, CarusoS. The interplay between metabolism, PPAR signaling pathway, and cancer. PPAR Res. 2017;2017:1830626. doi:10.1155/2017/183062628529521
  • HarnchoowongS, SuchonwanitP. PPAR-gamma agonists and their role in primary cicatricial alopecia. PPAR Res. 2017;2017:2501248. doi:10.1155/2017/250124829333153
  • ZhangG, HeJ, YeX, et al. beta-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019;10(4):255. doi:10.1038/s41419-019-1492-630874538
  • SonY, CheongYK, KimNH, ChungHT, KangDG, PaeHO. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:792639. doi:10.1155/2011/79263921637379
  • ChenK, LiJ, WangJ, et al. 15-Deoxy- gamma 12,14-prostaglandin J2 reduces liver impairment in a model of ConA-induced acute hepatic inflammation by activation of PPAR gamma and reduction in NF- kappa B activity. PPAR Res. 2014;2014:215631.25120564
  • ChenK, LiJJ, LiSN, et al. 15-Deoxy-Delta(12,14)-prostaglandin J2 alleviates hepatic ischemia-reperfusion injury in mice via inducing antioxidant response and inhibiting apoptosis and autophagy. Acta Pharmacol Sin. 2017;38(5):672–687. doi:10.1038/aps.2016.10828216619
  • LiJ, GuoC, WuJ. 15-Deoxy–(12,14)-Prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR-gamma: function and mechanism. PPAR Res. 2019;2019:7242030. doi:10.1155/2019/724203031467514
  • MakoukjiJ, SaadehF, MansourKA, et al. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol. 2018;5(9):1089–1103. doi:10.1002/acn3.2018.5.issue-930250865
  • KinarivalaN, PatelR, BoustanyRM, Al-AhmadA, TrippierPC. Discovery of aromatic carbamates that confer neuroprotective activity by enhancing autophagy and inducing the anti-apoptotic protein B-Cell lymphoma 2 (Bcl-2). J Med Chem. 2017;60(23):9739–9756. doi:10.1021/acs.jmedchem.7b0119929110485
  • TaoL, HuangK, WangJ, et al. Retinol palmitate protects against myocardial ischemia/reperfusion injury via reducing oxidative stress and inhibiting apoptosis. Am J Transl Res. 2019;11(3):1510–1520.30972178
  • ChenL, ZhangD, YuL, DongH. Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered. 2019;10:121–132. doi:10.1080/21655979.2019.160581230971184
  • AghaeiM, MotallebnezhadM, GhorghanluS, et al. Targeting autophagy in cardiac ischemia/reperfusion injury: a novel therapeutic strategy. J Cell Physiol. 2019;234:16768–16778. doi:10.1002/jcp.2834530807647
  • FuB, ZengQ, ZhangZ, et al. Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization. Oxid Med Cell Longev. 2019;2019:7824684. doi:10.1155/2019/782468430962864
  • ZhaoR, XieE, YangX, GongB. Alliin alleviates myocardial ischemia-reperfusion injury by promoting autophagy. Biochem Biophys Res Commun. 2019;512:236–243.30885435
  • RenY, SunC, SunY, et al. PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul Pharmacol. 2009;51(2–3):169–174. doi:10.1016/j.vph.2009.06.00419540934
  • YangJ. PPAR-gamma silencing inhibits the apoptosis of A549 cells by upregulating Bcl-2. Zhongguo Fei Ai Za Zhi. 2013;16(3):125–130. doi:10.3779/j.issn.1009-3419.2013.03.0223514940
  • NieH, XueX, LiJ, et al. Nitro-oleic acid attenuates OGD/R-triggered apoptosis in renal tubular cells via inhibition of Bax mitochondrial translocation in a PPAR-gamma-dependent manner. Cell Physiol Biochem. 2015;35(3):1201–1218. doi:10.1159/00037394425766531
  • ChiangWC, WeiY, KuoYC, et al. High-throughput screens to identify autophagy inducers that function by disrupting beclin 1/Bcl-2 binding. ACS Chem Biol. 2018;13(8):2247–2260. doi:10.1021/acschembio.8b0042129878747