144
Views
6
CrossRef citations to date
0
Altmetric
Original Research

The Traditional Chinese Medicine Compound, GRS, Alleviates Blood–Brain Barrier Dysfunction

, , , , , , & show all
Pages 933-947 | Published online: 28 Feb 2020

References

  • FisherM, SaverJL. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 2015;14(7):758–767. doi:10.1016/S1474-4422(15)00054-X26067128
  • Correction to: Heart Disease and Stroke Statistics-2017. Update: a report from the American Heart Association. Circulation. 2017;136(10):e196. doi:10.1161/CIRCULATIONAHA.117.02761228874428
  • MoskowitzMA, LoEH, IadecolaC. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–198. doi:10.1016/j.neuron.2010.07.00220670828
  • RodrigoR, Fernandez-GajardoR, GutierrezR, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698–714. doi:10.2174/187152731131205001523469845
  • KhatriR, McKinneyAM, SwensonB, et al. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79(13 Suppl 1):S52–S57. doi:10.1212/WNL.0b013e3182697e7023008413
  • Van ItallieCM, AndersonJM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–165. doi:10.1016/j.semcdb.2014.08.01125171873
  • RicciS, GrandgirardD, WenzelM, et al. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis. 2014;14:726. doi:10.1186/s12879-014-0726-625551808
  • WallezY, HuberP. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta. 2008;1778(3):794–809. doi:10.1016/j.bbamem.2007.09.00317961505
  • EndresM, FinkK, ZhuJ, et al. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest. 1999;103(3):347–354. doi:10.1172/JCI49539927495
  • ShiY, ZhangL, PuH, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. doi:10.1038/ncomms1052326813496
  • ChapinLM, BlankmanE, SmithMA, et al. Lateral communication between stress fiber sarcomeres facilitates a local remodeling response. Biophys J. 2012;103(10):2082–2092. doi:10.1016/j.bpj.2012.09.03823200042
  • PellegrinS, MellorH. Actin stress fibres. J Cell Sci. 2007;120(Pt 20):3491–3499. doi:10.1242/jcs.01847317928305
  • SuurnaMV, AshworthSL, HosfordM, et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol. 2006;290(6):F1398–F1407. doi:10.1152/ajprenal.00194.200516434575
  • Ruiz-LoredoAY, LopezE, Lopez-ColomeAM. Thrombin promotes actin stress fiber formation in RPE through Rho/ROCK-mediated MLC phosphorylation. J Cell Physiol. 2011;226(2):414–423. doi:10.1002/jcp.v226.220672289
  • AhmedT, RazaSH, MaryamA, et al. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull. 2016;125:30–43. doi:10.1016/j.brainresbull.2016.04.00227060612
  • CaoG, JiangN, HuY, et al. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci. 2016;17(9):1418. doi:10.3390/ijms17091418
  • WangCP, LiGC, ShiYW, et al. Neuroprotective effect of schizandrin A on oxygen and glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. J Physiol Biochem. 2014;70(3):735–747. doi:10.1007/s13105-014-0342-324986222
  • LiF, FanX, ZhangY, et al. Cardioprotection by combination of three compounds from ShengMai preparations in mice with myocardial ischemia/reperfusion injury through AMPK activation-mediated mitochondrial fission. Sci Rep. 2016;6:37114. doi:10.1038/srep3711427869201
  • CaoG, YeX, XuY, et al. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice. Drug Des Devel Ther. 2016;10:315–325. doi:10.2147/DDDT.S96818
  • YonemoriF, YamaguchiT, YamadaH, et al. Evaluation of a motor deficit after chronic focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1998;18(10):1099–1106. doi:10.1097/00004647-199810000-000069778186
  • ZhangT, FangS, WanC, et al. Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia. Sci Rep. 2015;5:16548. doi:10.1038/srep1654826549644
  • YaoX, DeruginN, ManleyGT, et al. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci Lett. 2015;584:368–372. doi:10.1016/j.neulet.2014.10.04025449874
  • GliemM, KrammesK, LiawL, et al. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia. 2015;63(12):2198–2207. doi:10.1002/glia.v63.1226148976
  • ZhuJC, SiMY, LiYZ, et al. Circulating tight junction proteins mirror blood-brain barrier integrity in leukaemia central nervous system metastasis. Hematol Oncol. 2017;35(3):365–373. doi:10.1002/hon.228926999811
  • KruegerM, BechmannI, ImmigK, et al. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(2):292–303. doi:10.1038/jcbfm.2014.19925425076
  • CoomberBL, StewartPA. Morphometric analysis of CNS microvascular endothelium. Microvasc Res. 1985;30(1):99–115. doi:10.1016/0026-2862(85)90042-14021842
  • LiuWY, WangZB, ZhangLC, et al. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther. 2012;18(8):609–615. doi:10.1111/cns.2012.18.issue-822686334
  • SeoJH, GuoS, LokJ, et al. Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des. 2012;18(25):3645–3648. doi:10.2174/13816121280200274222574977
  • AbbottNJ, PatabendigeAA, DolmanDE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi:10.1016/j.nbd.2009.07.03019664713
  • CopinJC, GoodyearMC, GiddayJM, et al. Role of matrix metalloproteinases in apoptosis after transient focal cerebral ischemia in rats and mice. Eur J Neurosci. 2005;22(7):1597–1608. doi:10.1111/j.1460-9568.2005.04367.x16197500
  • RenC, LiN, WangB, et al. Limb ischemic perconditioning attenuates blood-brain barrier disruption by inhibiting activity of MMP-9 and occludin degradation after focal cerebral ischemia. Aging Dis. 2015;6(6):406–417. doi:10.14336/AD.2015.081226618042
  • TurnerRJ, SharpFR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci. 2016;10:56. doi:10.3389/fncel.2016.0005626973468
  • HeoJH, LuceroJ, AbumiyaT, et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19(6):624–633. doi:10.1097/00004647-199906000-0000510366192
  • TojkanderS, GatevaG, LappalainenP. Actin stress fibers–assembly, dynamics and biological roles. J Cell Sci. 2012;125(Pt 8):1855–1864. doi:10.1242/jcs.09808722544950
  • KassianidouE, KumarS. A biomechanical perspective on stress fiber structure and function. Biochim Biophys Acta. 2015;1853(11 Pt B):3065–3074. doi:10.1016/j.bbamcr.2015.04.00625896524
  • ChenG, HouZ, GulbransonDR, et al. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell. 2010;7(2):240–248. doi:10.1016/j.stem.2010.06.01720682449
  • KimuraK, ItoM, AmanoM, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–248. doi:10.1126/science.273.5272.2458662509
  • LiG, SimonMJ, CancelLM, et al. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng. 2010;38(8):2499–2511. doi:10.1007/s10439-010-0023-520361260
  • NaikP, CuculloL. In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–1354. doi:10.1002/jps.2302222213383
  • WatanabeT, DohguS, TakataF, et al. Paracellular barrier and tight junction protein expression in the immortalized brain endothelial cell lines bEND.3, bEND.5 and mouse brain endothelial cell 4. Biol Pharm Bull. 2013;36(3):492–495. doi:10.1248/bpb.b12-0091523449334
  • LeeHT, ChangYC, TuYF, et al. CREB activation mediates VEGF-A’s protection of neurons and cerebral vascular endothelial cells. J Neurochem. 2010;113(1):79–91. doi:10.1111/j.1471-4159.2010.06584.x20067582
  • KuJM, TaherM, ChinKY, et al. Characterisation of a mouse cerebral microvascular endothelial cell line (bEnd.3) after oxygen glucose deprivation and reoxygenation. Clin Exp Pharmacol Physiol. 2016;43(8):777–786. doi:10.1111/cep.2016.43.issue-827128638
  • DeliMA, AbrahamCS, KataokaY, et al. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127. doi:10.1007/s10571-004-1377-815962509
  • TietzS, EngelhardtB. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209(4):493–506. doi:10.1083/jcb.20141214726008742
  • PritchardCA, HayesL, WojnowskiL, et al. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol Cell Biol. 2004;24(13):5937–5952. doi:10.1128/MCB.24.13.5937-5952.200415199148
  • OhashiK. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ. 2015;57(4):275–290. doi:10.1111/dgd.1221325864508
  • HeemskerkN, SchimmelL, OortC, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493. doi:10.1038/ncomms1049326814335
  • LeeSR, XuYN, JoYJ, et al. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation. Mol Reprod Dev. 2015;82(11):849–858. doi:10.1002/mrd.2252426175189
  • ChenW, GuoY, YangW, et al. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia. Exp Brain Res. 2015;233(10):59–127. doi:10.1007/s00221-015-4352-3