1,205
Views
18
CrossRef citations to date
0
Altmetric
Original Research

In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment

, , , , , , , & show all
Pages 309-329 | Published online: 23 Jan 2020

References

  • FavoritiP, CarboneG, GrecoM, PirozziF, PirozziRE, CorcioneF. Worldwide burden of colorectal cancer: a review. Updates Surg. 2016;68(1):7–11.27067591
  • TorreLA, BrayF, SiegelRL, FerlayJ, Lortet-TieulentJ, JemalA. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.2126225651787
  • NakayamaG, TanakaC, KoderaY. Current options for the diagnosis, staging and therapeutic management of colorectal cancer. Gastrointest Tumors. 2014;1:25–32. doi:10.1159/000354995
  • FujiwaraK, OhuchidaK, SadaM, et al. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells. PLoS One. 2014;9(9):e107247. doi:10.1371/journal.pone.010724725221999
  • LietoE, GaliziaG, OrdituraM, et al. CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol Lett. 2015;9(2):542–550. doi:10.3892/ol.2014.274925624884
  • HanS, ZongS, ShiQ, et al. Is Ep-CAM expression a diagnostic and prognostic biomarker for colorectal cancer? A systematic meta-analysis. EBioMedicine. 2017;20:61–69. doi:10.1016/j.ebiom.2017.05.02528558958
  • SmithNR, DaviesPS, LevinTG, et al. Cell adhesion molecule CD166/ALCAM functions within the crypt to orchestrate murine intestinal stem cell homeostasis. Cell Mol Gastroenterol Hepatol. 2017;3(3):389–409. doi:10.1016/j.jcmgh.2016.12.01028462380
  • InagumaS, LasotaJ, WangZ, et al. Expression of ALCAM (CD166) and PD-L1 (CD274) independently predicts shorter survival in malignant pleural mesothelioma. Hum Pathol. 2018;71:1–7. doi:10.1016/j.humpath.2017.04.03228811252
  • BowenMA, PatelDD, LiX, et al. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med. 1995;181(6):2213–2220. doi:10.1084/jem.181.6.22137760007
  • Consuegra-FernándezM, LinF, FoxDA, LozanoF. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev. 2018;17(5):493–503. doi:10.1016/j.autrev.2017.12.00429526637
  • LehmannJM, RiethmüllerG, JohnsonJP. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci U S A. 1989;86(24):9891–9895. doi:10.1073/pnas.86.24.98912602381
  • SwartGW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol. 2002;81(6):313–321. doi:10.1078/0171-9335-0025612113472
  • FanaliC, LucchettiD, FarinaM, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J Gastroenterol. 2014;20(4):923–942. doi:10.3748/wjg.v20.i4.92324574766
  • WahabSMR, IslamF, GopalanV, LamAK. The identifications and clinical implications of cancer stem cells in colorectal cancer. Clin Colorectal Cancer. 2017;16(2):93–102. doi:10.1016/j.clcc.2017.01.01128237538
  • PatriarcaC, MacchiRM, MarschnerAK, MellstedtH. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38(1):68–75. doi:10.1016/j.ctrv.2011.04.00221576002
  • SchnellU, CirulliV, GiepmansBN. EpCAM: structure and function in health and disease. Biochim Biophys Acta. 2013;1828(8):1989–2001. doi:10.1016/j.bbamem.2013.04.01823618806
  • Herreros-PomaresA, Aguilar-GallardoC, Calabuig-FariñasS, SireraR, Jantus-LewintreE, CampsC. EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Crit Rev Oncol Hematol. 2018;126:52–63. doi:10.1016/j.critrevonc.2018.03.00629759567
  • BaeuerlePA, GiresO. EpCAM (CD326) finding its role in cancer [published correction appears in Br J Cancer. 2007: 7; 96 (9):1491]. Br J Cancer. 2007;96(3):417–423. doi:10.1038/sj.bjc.660349417211480
  • KaliamurthiS, SelvarajG, JunaidM, KhanA, GuK, WeiDQ. Cancer Immunoinformatics: a promising era in the development of peptide vaccines for human papillomavirus-induced cervical cancer. Curr Pharm Des. 2018;24(32):3791–3817. doi:10.2174/138161282466618110609413330398106
  • KarPP, SrivastavaA. Immuno-informatics analysis to identify novel vaccine candidates and design of a multi-epitope based vaccine candidate against theileria parasites. Front Immunol. 2018;9:2213. doi:10.3389/fimmu.2018.0221330374343
  • WebbB, SaliA. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2016;86:2.9.1–2.9.37. doi:10.1002/cpps.20
  • HollingsworthSA, KarplusPA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010;1(3–4):271–283. doi:10.1515/bmc.2010.02221436958
  • FioramonteM, Dos SantosAM, McIlwainS, NobleWS, FranchiniKG, GozzoFC. Analysis of secondary structure in proteins by chemical cross-linking coupled to MS. Proteomics. 2012;12(17):2746–2752. doi:10.1002/pmic.20120004022778071
  • GrassoEJ, SottileAE, CoronelCE. Structural prediction and in silico physicochemical characterization for mouse Caltrin I and bovine caltrin proteins. Bioinform Biol Insights. 2016;30(10):225–236.
  • SahaS, RaghavaGP. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;34(Web Server issue):W202–W209. doi:10.1093/nar/gkl34316844994
  • DoytchinovaIA, FlowerDR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8:4. doi:10.1186/1471-2105-8-417207271
  • PonomarenkoJ, BuiHH, LiW, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:514. doi:10.1186/1471-2105-9-51419055730
  • ZhouP, JinB, LiH, HuangSY. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 2018;46(W1):W443–W450. doi:10.1093/nar/gky35729746661
  • SmialowskiP, DooseG, TorklerP, KaufmannS, FrishmanD. PROSO II–a new method for protein solubility prediction. FEBS J. 2012;279(12):2192–2200. doi:10.1111/j.1742-4658.2012.08603.x22536855
  • PetersenB, PetersenTN, AndersenP, NielsenM, LundegaardC. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol. 2009;9:51. doi:10.1186/1472-6807-9-5119646261
  • ZukerM. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi:10.1093/nar/gkg59512824337
  • SatoK, HamadaM, AsaiK, MituyamaT. CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res. 2009;37(WebServer issue):W277–W280. doi:10.1093/nar/gkp36719435882
  • HerlynM, SteplewskiZ, HerlynD, KoprowskiH. Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci U S A. 1979;76(3):1438–1442. doi:10.1073/pnas.76.3.1438286328
  • WeichertW, KnöselT, BellachJ, DietelM, KristiansenG. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol. 2004;57(11):1160–1164. doi:10.1136/jcp.2004.01623815509676
  • ChaudryMA, SalesK, RufP, LindhoferH, WinsletMC. EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer. 2007;96(7):1013–1019. doi:10.1038/sj.bjc.660350517325709
  • LevinTG, PowellAE, DaviesPS, et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology. 2010;139(6):2072–2082.e5. doi:10.1053/j.gastro.2010.08.05320826154
  • StoeckleinNH, SiegmundA, ScheunemannP, et al. EpCAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker. BMC Cancer. 2006;6:165. doi:10.1186/1471-2407-6-16516796747
  • WiigerMT, GehrkenHB, FodstadØ, MaelandsmoGM, AnderssonY. A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol Immunother. 2010;59(11):1665–1674. doi:10.1007/s00262-010-0892-320635083