1,095
Views
72
CrossRef citations to date
0
Altmetric
Review

Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review

, , , , ORCID Icon &
Pages 541-550 | Published online: 05 Feb 2020

References

  • RodriguesLR. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. JCIS. 2015;449:304–316.
  • TangB, ChengG, GuJ-C, XuC-H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–612. doi:10.1016/j.drudis.2008.04.00618598917
  • WuY-S, NgaiS-C, GohB-H, ChanK-G, LeeL-H, ChuahL-H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol. 2017;8:761. doi:10.3389/fphar.2017.0076129123482
  • KarasuluHY. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv. 2008;5(1):119–135. doi:10.1517/17425247.5.1.11918095932
  • GibaudS, AttiviD. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937–951. doi:10.1517/17425247.2012.69486522663249
  • FanunM. Microemulsions as delivery systems. Curr Opin Colloid Interface Sci. 2012;17(5):306–313. doi:10.1016/j.cocis.2012.06.001
  • RodriguesL, BanatIM, TeixeiraJ, OliveiraR. Biosurfactants: potential applications in medicine. J Infect Chemother. 2006;57(4):609–618. doi:10.1093/jac/dkl024
  • RoyA, MahataD, PaulD, KorpoleS, FrancoOL, MandalSM. Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol. 2013;4:332. doi:10.3389/fmicb.2013.0033224312083
  • ElshikhM, FunstonS, ChebbiA, AhmedS, MarchantR, BanatIM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol. 2017;36:26–36. doi:10.1016/j.nbt.2016.12.00928065676
  • DeyG, BhartiR, SenR, MandalM. Microbial amphiphiles: a class of promising new-generation anticancer agents. Drug Discov Today. 2015;20(1):136–146. doi:10.1016/j.drudis.2014.09.00625241656
  • OhadiM, DehghannoudehG, ShakibaieM, BanatIM, PournamdariM, ForootanfarH. Isolation, characterization, and optimization of biosurfactant production by an oil-degrading acinetobacter junii B6 isolated from an Iranian oil excavation site. Biocatal Agric Biotechnol. 2017;12:1–9. doi:10.1016/j.bcab.2017.08.007
  • OhadiM, ForootanfarH, RahimiHR, et al. Antioxidant potential and wound healing activity of biosurfactant produced by acinetobacter junii B6. Curr Pharm Biotechnol. 2017.
  • GuptaS, RaghuwanshiN, VarshneyR, et al. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute. Biomed Pharmacother. 2017;94:1186–1196. doi:10.1016/j.biopha.2017.08.01028830069
  • OhadiM, DehghannoudehG, ForootanfarH, ShakibaieM, RajaeeM. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by acinetobacter junii B6. Int J Biol Macromol. 2018;112:712–719. doi:10.1016/j.ijbiomac.2018.01.20929425877
  • KiranGS, SelvinJ, ManilalA, SujithS. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol. 2011;31(4):354–364. doi:10.3109/07388551.2010.53997121254833
  • PalanisamyP, RaichurAM. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mat Sci Eng C. 2009;29(1):199–204. doi:10.1016/j.msec.2008.06.008
  • HazraC, KunduD, ChaudhariA. Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. RSC Adv. 2015;5(4):2974–2982. doi:10.1039/C4RA13261K
  • XieY, YeR, LiuH. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf a Physicochem Eng Asp. 2006;279(1–3):175–178. doi:10.1016/j.colsurfa.2005.12.056
  • KumarCG, MamidyalaSK, DasB, SridharB, DeviGS, KarunaMS. Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. J Microbiol Biotechnol. 2010;20(7):1061–1068. doi:10.4014/jmb.1001.0101820668398
  • GudiñaEJ, RangarajanV, SenR, RodriguesLR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667–675. doi:10.1016/j.tips.2013.10.00224182625
  • FracchiaL, CeresaC, BanatIM. Biosurfactants in cosmetic, biomedical and pharmaceutical industry In: Banat IM, Rengathavasi T, editors. Microbial Biosurfactants and Their Environmental and Industrial Applications:. CRC Press; 2019:258–287.
  • BanatIM, MakkarRS, CameotraSS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000;53(5):495–508. doi:10.1007/s00253005164810855707
  • CallenderSP, MathewsJA, KobernykK, WettigS. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm X. 2017;526(1–2):425–442. doi:10.1016/j.ijpharm.2017.05.005
  • ShimGY, KimSH, HanS-E, KimY, OhYJAJPS. Cationic surfactin liposomes for enhanced cellular delivery of siRNA. Asian J Pharm Sci. 2009;4:207–214.
  • MoherD, LiberatiA, TetzlaffJ, AltmanDG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269. doi:10.7326/0003-4819-151-4-200908180-0013519622511
  • FaivreV, RosilioV. Interest of glycolipids in drug delivery: from physicochemical properties to drug targeting. Expert Opin Drug Deliv. 2010;7(9):1031–1048. doi:10.1517/17425247.2010.51117220716018
  • NguyenTT, SabatiniDA. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int J Mol Sci. 2011;12(2):1232–1244. doi:10.3390/ijms1202123221541055
  • WorakitkanchanakulW, ImuraT, MoritaT, et al. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol Lipid-A. J Oleo Sci. 2008;57(1):55–59. doi:10.5650/jos.57.5518075224
  • FukuokaT, YanagiharaT, ItoS, et al. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. J Oleo Sci. 2012;61(5):285–289. doi:10.5650/jos.61.28522531056
  • WorakitkanchanakulW, ImuraT, FukuokaT, et al. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces. 2008;65(1):106–112. doi:10.1016/j.colsurfb.2008.03.00918456469
  • XieY, YeR, LiuH. Microstructure studies on biosurfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system. Colloids Surf a Physicochem Eng Asp. 2007;292(2–3):189–195. doi:10.1016/j.colsurfa.2006.06.021
  • XieY, LiY, YeR. Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant—rhamnolipid. J Dispers Sci Technol. 2005;26(4):455–461. doi:10.1081/DIS-200054576
  • MendesAN, FilgueirasLA, PintoJC, NeleM. Physicochemical properties of rhamnolipid biosurfactant from Pseudomonas aeruginosa PA1 to applications in microemulsions. J Biomater Nanobiotechnol. 2015;6(01):64. doi:10.4236/jbnb.2015.61007
  • Moya-RamírezI, García-RománM, Fernández-ArteagaA. Rhamnolipids: highly compatible surfactants for the enzymatic hydrolysis of waste frying oils in microemulsion systems. ACS Sustain Chem Eng. 2017;5(8):6768–6775. doi:10.1021/acssuschemeng.7b01008
  • NguyenTT, SabatiniDA. Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfactants Deterg. 2009;12(2):109–115. doi:10.1007/s11743-008-1098-y
  • NguyenTT, EdelenA, NeighborsB, SabatiniDA. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci. 2010;348(2):498–504. doi:10.1016/j.jcis.2010.04.05320471022
  • KiranGS, SabuA, SelvinJ. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol. 2010;148(4):221–225. doi:10.1016/j.jbiotec.2010.06.01220600381
  • HazraC, KunduD, ChatterjeeA, ChaudhariA, MishraS. Poly (methyl methacrylate)(core)–biosurfactant (shell) nanoparticles: size controlled sub-100 nm synthesis, characterization, antibacterial activity, cytotoxicity and sustained drug release behavior. Colloids Surf a Physicochem Eng Asp. 2014;449:96–113. doi:10.1016/j.colsurfa.2014.02.051
  • KuralFH, GürsoyRN. Formulation and characterization of surfactin-containing self-microemulsifying drug delivery systems. Hacettepe Univ Eczacı Fak Derg. 2010;30:3171–3186.
  • HeZ, ZengW, ZhuX, ZhaoH, LuY, LuZ. Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid. Colloids Surf B Biointerfaces. 2017;151:232–239. doi:10.1016/j.colsurfb.2016.12.02628013167
  • MaityJP, LinT-J, Cheng-HP-H, et al. Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin. Int J Mol Sci. 2011;12(6):3821–3830. doi:10.3390/ijms1206382121747709
  • FariasCB, Ferreira SilvaA, Diniz RufinoR, Moura LunaJ, Gomes SouzaJE, SarubboLA. Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Electron J Biotechn. 2014;17(3):122–125. doi:10.1016/j.ejbt.2014.04.003
  • RodriguesLR. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci. 2015;449:304–316. doi:10.1016/j.jcis.2015.01.02225655712
  • EslaminejadT, Nematollahi-MahaniSN, AnsariM. Cationic β-cyclodextrin–Chitosan conjugates as potential carrier for pmcherry-c1 gene delivery. Mol Biotechnol. 2016;58(4):287–298. doi:10.1007/s12033-016-9927-026961910
  • EslaminejadT, Nematollahi-MahaniSN, AnsariM. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles. J Magn Magn Mater. 2016;402:34–43. doi:10.1016/j.jmmm.2015.11.037
  • ZokaeiE, Badoei-dalfradA, AnsariM, KaramiZ, EslaminejadT, Nematollahi-MahaniSN. Therapeutic potential of DNAzyme loaded on chitosan/cyclodextrin nanoparticle to recovery of chemosensitivity in the mcf-7 cell line. Appl Biochem Biotechnol. 2018;1–16.
  • GangwarM, SinghR, GoelR, NathG. Recent advances in various emerging vesicular systems: an overview. Asian Pac J Trop Biomed. 2012;2(2):S1176–S1188. doi:10.1016/S2221-1691(12)60381-5
  • LawrenceMJ, ReesGD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–193. doi:10.1016/j.addr.2012.09.018
  • KitamotoD, MoritaT, FukuokaT, KonishiM-A, ImuraT. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci. 2009;14(5):315–328. doi:10.1016/j.cocis.2009.05.009
  • Fan-L-L, DongY-C, FanY-F, ZhangJ, ChenQ-H. Production and identification of mannosylerythritol lipid-A homologs from the ustilaginomycetous yeast Pseudozyma aphidis ZJUDM34. Carbohydr Res. 2014;392:1–6. doi:10.1016/j.carres.2014.04.01324814655
  • Rivera-RangelRD, González-MuñozMP, Avila-RodriguezM, Razo-LazcanoTA, SolansC. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf a Physicochem Eng Asp. 2018;536:60–67. doi:10.1016/j.colsurfa.2017.07.051
  • RaichurAM. Dispersion of colloidal alumina using a rhamnolipid biosurfactant. J Dispers Sci Technol. 2007;28(8):1272–1277. doi:10.1080/01932690701528274
  • HanD, YangH, ZhuC, WangF. Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles. Powder Techno. 2008;185(3):286–290. doi:10.1016/j.powtec.2007.10.018