163
Views
29
CrossRef citations to date
0
Altmetric
Original Research

Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to Induce Autophagy and Inhibit Atherosclerosis

, , ORCID Icon, , , , & show all
Pages 457-468 | Published online: 03 Feb 2020

References

  • RebeccaVW, AmaravadiRK. Emerging strategies to effectively target autophagy in cancer. Oncogene. 2016;35(1):1–11. doi:10.1038/onc.2015.9925893285
  • DengZ, PurtellK, LachanceV, et al. Autophagy receptors and neurodegenerative diseases. Trends in Cell Biology. 2017;27(7):491–504. doi:10.1016/j.tcb.2017.01.00128169082
  • Bravo-San PedroJM, KroemerG, GalluzziL. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120(11):1812–1824. doi:10.1161/CIRCRESAHA.117.31108228546358
  • SchrijversDM, de MeyerGR, MartinetW. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31(12):2787–2791. doi:10.1161/ATVBAHA.111.22489922096098
  • MartianovI, RamadassA, Serra BarrosA, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445(7128):666–670. doi:10.1038/nature0551917237763
  • QuinnJJ, ChangHY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. doi:10.1038/nrg.2015.1026666209
  • ViereckJ, ThumT. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res. 2017;120(2):381–399. doi:10.1161/CIRCRESAHA.116.30843428104771
  • UchidaS, DimmelerS. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–750. doi:10.1161/CIRCRESAHA.116.30252125677520
  • HuYW, GuoFX, XuYJ, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129(3):1115–1128. doi:10.1172/JCI9823030589415
  • YoungTL, MatsudaT, CepkoCL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501–512. doi:10.1016/j.cub.2005.02.02715797018
  • HeC, LiuZ, JinL, et al. lncRNA TUG1-mediated mir-142-3p downregulation contributes to metastasis and the epithelial-to-mesenchymal transition of hepatocellular carcinoma by targeting ZEB1. Cell Physiol Biochem. 2018;48(5):1928–1941. doi:10.1159/00049251730092578
  • SunJ, HuJ, WangG, et al. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res. 2018;37(1):106–116. doi:10.1186/s13046-018-0771-x29776371
  • BaoMH, SzetoV, YangBB, et al. Long non-coding RNAs in ischemic stroke. Cell Death Differ. 2018;9(3):281–293. doi:10.1038/s41419-018-0282-x
  • LongJ, BadalSS, YeZ, et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J Clin Invest. 2016;126(11):4205–4218. doi:10.1172/JCI8792727760051
  • YuC, LiWB, LiuJB, et al. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 2018;7(2):471–484. doi:10.1002/cam4.128729282893
  • ChapuisN, TamburiniJ, GreenAS, et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia. 2010;24(10):1686–1699. doi:10.1038/leu.2010.17020703258
  • KanamoriH, NaruseG, YoshidaA, et al. Metformin enhances autophagy and provides cardioprotection in δ-Sarcoglycan deficiency-induced dilated cardiomyopathy. Circ Heart Fail. 2019;12(4):e005418. doi:10.1161/CIRCHEARTFAILURE.118.00541830922066
  • LoiH, BoalF, TronchereH, et al. Metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction. Front Pharmacol. 2019;10:154–159. doi:10.3389/fphar.2019.0015430873028
  • GoldbergRB, ArodaVR, BluemkeDA, et al. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation. 2017;136(1):52–64. doi:10.1161/CIRCULATIONAHA.116.02548328476766
  • AnholmC, KumarathuraiP, PedersenLR, et al. Liraglutide in combination with metformin may improve the atherogenic lipid profile and decrease C-reactive protein level in statin treated obese patients with coronary artery disease and newly diagnosed type 2 diabetes: A randomized trial. Atherosclerosis. 2019;288:60–66. doi:10.1016/j.atherosclerosis.2019.07.00731326727
  • NataliA, NestiL, VenturiE, et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case-control study. Diabetes Obes Metab. 2019;21(2):412–416. doi:10.1111/dom.1351930178545
  • LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.126211846609
  • FuY, SunS, SunH, et al. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol. 2019;234(10):18131–18145. doi:10.1002/jcp.2844630891776
  • DiaoS, SunJ, MaB, et al. Influence of crocetin on high-cholesterol diet induced atherosclerosis in rats via anti-oxidant activity together with inhibition of inflammatory response and p38 MAPK signaling pathway. Saudi J Biol Sci. 2018;25(3):493–499. doi:10.1016/j.sjbs.2016.11.00529692651
  • MoJ, YangR, LiF, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine. 2018;42:66–74. doi:10.1016/j.phymed.2018.03.02129655699
  • LongM, TaoS, Rojo de la VegaM, et al. Nrf2-dependent suppression of azoxymethane/dextran sulfate sodium-induced colon carcinogenesis by the cinnamon-derived dietary factor cinnamaldehyde. Cancer Prev Res (Phila). 2015;8(5):444–454. doi:10.1158/1940-6207.CAPR-14-035925712056
  • Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970–983. doi:10.1016/S0140-6736(13)61836-X24269108
  • YangL, LiuY, WangS, et al. Association between Lp-PLA2 and coronary heart disease in Chinese patients. J Int Med Res. 2017;459(1):159–169. doi:10.1177/0300060516678145
  • BerryC, CorcoranD, HenniganB, et al. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments. Eur Heart J. 2015;36(45):3155–3164. doi:10.1093/eurheartj/ehv20626038588
  • ZhuY, YangT, DuanJ, et al. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY). 2019;11(4):1089–1109. doi:10.18632/aging.10176630787203
  • YeZM, YangS, XiaYP, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019;10(2):138–153. doi:10.1038/s41419-019-1409-430755588
  • CremerS, MichalikKM, FischerA, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation. 2019;139(10):1320–1334. doi:10.1161/CIRCULATIONAHA.117.02901530586743
  • OsonoiY, MitaT, AzumaK, et al. Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis. Autophagy. 2018;14(11):1991–2006. doi:10.1080/15548627.2018.150113230025494
  • XiongY, YepuriG, ForbitehM, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy. 2014;10(12):2223–2238. doi:10.4161/15548627.2014.98178925484082
  • GrootaertMO, da Costa MartinsPA, BitschN, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11(11):2014–2032. doi:10.1080/15548627.2015.109648526391655
  • WeiYM, LiX, XuM, et al. Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem. 2013;31(6):925–937. doi:10.1159/00035011123817226
  • JainK, ParanandiKS, SridharanS, et al. Autophagy in breast cancer and its implications for therapy. Am J Cancer Res. 2013;3(3):251–265.23841025
  • KondratskyiA, YassineM, KondratskaK, et al. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol. 2013;4:272–284. doi:10.3389/fphys.2013.0027224106480
  • ShimizuS, YoshidaT, TsujiokaM, et al. Autophagic cell death and cancer. Int J Mol Sci. 2014;15(2):3145–3153. doi:10.3390/ijms1502314524566140
  • ChenYJ, ChiCW, SuWC, et al. Lapatinib induces autophagic cell death and inhibits growth of human hepatocellular carcinoma. Oncotarget. 2014;5(13):4845–4854. doi:10.18632/oncotarget.204524947784
  • KlionskyDJ, AbdelmohsenK, AbeA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi:10.1080/15548627.2015.110035626799652
  • MizushimaN, YoshimoriT, LevineB. Methods in mammalian autophagy research. Cell. 2010;140(3):313–326. doi:10.1016/j.cell.2010.01.02820144757
  • YanL, ZhouJ, GaoY, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34(23):3076–3084. doi:10.1038/onc.2014.23625088204
  • WuP, TangY, FangX, et al. Metformin suppresses hypopharyngeal cancer growth by epigenetically silencing long non-coding RNA SNHG7 in FaDu Cells. Front Pharmacol. 2019;10:143–153. doi:10.3389/fphar.2019.0014330853913