95
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Tetrandrine Suppresses Transient Receptor Potential Cation Channel Protein 6 Overexpression- Induced Podocyte Damage via Blockage of RhoA/ROCK1 Signaling

, , , , , & show all
Pages 361-370 | Published online: 28 Jan 2020

References

  • LeW, LiangS, HuY, et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant. 2011;27:1479–1485. doi:10.1093/ndt/gfr52721965586
  • KhalilpourfarshbafiM, HajiaghaalipourF, SelvarajanKK, AdamA. Mesenchymal stem cell-based therapies against podocyte damage in diabetic nephropathy. J Tissue Eng Regen Med. 2017;14:201–210. doi:10.1007/s13770-017-0026-5
  • IlatovskayaDV, BlassG, PalyginO, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol. 2018;29:1917–1927. doi:10.1681/ASN.201803028029793963
  • LopesTG, de SouzaML, da SilvaVD, et al. Markers of renal fibrosis: how do they correlate with podocyte damage in glomerular diseases? PLoS One. 2019;14:e0217585. doi:10.1371/journal.pone.021758531220088
  • ChenY, LinL, TaoX, SongY, CuiJ, WanJ. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrol. 2019;20:106. doi:10.1186/s12882-019-1298-x30922260
  • RiehleM, BüscherAK, GohlkeB-O, et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol. 2016;27:2771–2783. doi:10.1681/ASN.201503031826892346
  • SzaboT, AmbrusL, ZakanyN, BallaG, BiroT. Regulation of TRPC6 ion channels in podocytes—Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Acta Physiol Hung. 2015;102:241–251. doi:10.1556/036.102.2015.3.226551740
  • ReiserJ, PoluKR, MöllerCC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739. doi:10.1038/ng159215924139
  • IlatovskayaDV, StaruschenkoA. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol. 2015;309:F393–F397. doi:10.1152/ajprenal.00186.201526084930
  • JiangL, DingJ, TsaiH, et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med. 2011;236:184–193. doi:10.1258/ebm.2010.010237
  • YangH, ZhaoB, LiaoC, et al. High glucose-induced apoptosis in cultured podocytes involves TRPC6-dependent calcium entry via the RhoA/ROCK pathway. Biochem Biophys Res Commun. 2013;434:394–400. doi:10.1016/j.bbrc.2013.03.08723570668
  • YaoXM, LiuYJ, WangYM, et al. Astragaloside IV prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6. Mol Med Rep. 2016;13:5149–5156. doi:10.3892/mmr.2016.516727109610
  • HuangY-L, CuiS-Y, CuiX-Y, et al. Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms. Phytomedicine. 2016;23:1821–1829.27912885
  • MaH, YaoL, PangL, LiX, YaoQ. Tetrandrine ameliorates sevoflurane‑induced cognitive impairment via the suppression of inflammation and apoptosis in aged rats. Mol Med Rep. 2016;13:4814–4820. doi:10.3892/mmr.2016.513227082007
  • LiuX, ZhouQ-G, ZhuX-C, XieL, CaiB-C. Components of fangji huangqi tang on the treatment of nephrotic syndrome by using integrated metabolomics based on“correlations between chemical and metabolic profiles”. Front Pharmacol. 2019;10:1261. doi:10.3389/fphar.2019.0126131695617
  • PerezG. Anti-inflammatory activity of compounds isolated from plants. ‎Sci World J. 2001;1:713–784. doi:10.1100/tsw.2001.77
  • ChoiH-S, KimH-S, MinKR, et al. Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol. 2000;69:173–179. doi:10.1016/S0378-8741(99)00141-510687873
  • ChenH, WangY, ZhuC, ZhangM. Clinical and pathological observation of the effect of individualization combined by traditional Chinese medicine and western medicine and sequenced therapy on IgA nephrology. J Nephropathy Integr Chin West Med. 2004;5:261–265.
  • WangY-J, HeL-Q, SunW, et al. Optimized project of traditional Chinese medicine in treating chronic kidney disease stage 3: a multicenter double-blinded randomized controlled trial. J Ethnopharmacol. 2012;139:757–764. doi:10.1016/j.jep.2011.12.00922178174
  • ZhouH-Y, WangF, ChengL, FuL-Y, ZhouJ, YaoW-X. Effects of tetrandrine on calcium and potassium currents in isolated rat hepatocytes. World J Gastroenterol. 2003;9:134. doi:10.3748/wjg.v9.i1.13412508368
  • LiuQ-Y, KarpinskiE, PangP. Tetrandrine inhibits both T and L calcium channel currents in ventricular cells. J Cardiovasc Pharmacol. 1992;20:513–519. doi:10.1097/00005344-199210000-000011280704
  • LiuQ-Y, KarpinskiE, RaoM-R, PangP. Tetrandrine: a novel calcium channel antagonist inhibits type I calcium channels in neuroblastoma cells. Neuropharmacology. 1991;30:1325–1331. doi:10.1016/0028-3908(91)90030-F1787886
  • TakemuraH, ImotoK, OhshikaH, KwanCY. Tetrandrine as a calcium antagonist. Clin Exp Pharmacol Physiol. 1996;23:751–753. doi:10.1111/j.1440-1681.1996.tb01772.x8886503
  • QiL, Xian-YangZ, Yu-FengX, YueD, Zhi-FengW. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways. Chin J Nat Med. 2015;13:831–841. doi:10.1016/S1875-5364(15)30087-X26614458
  • ZhangZ, LiuT, YuM, LiK, LiW. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res. 2018;37:7. doi:10.1186/s13046-018-0678-629334999
  • HuangT, XuS, DeoR, et al. Targeting the Ca2+/Calmodulin-dependent protein kinase II by Tetrandrine in human liver cancer cells. Biochem Biophys Res Commun. 2019;508:1227–1232. doi:10.1016/j.bbrc.2018.12.01230554655
  • QianY, HuangY. Effects of tetrandrine on rabbit platelet aggregation, thromboxane A2 generation and calmodulin activity. Zhongguo Yao Li Xue Bao. 1989;10:61–65.2816404
  • GuC, ZhouG, NobleNA, BorderWA, CheungAK, HuangY. Targeting reduction of proteinuria in glomerulonephritis: maximizing the antifibrotic effect of valsartan by protecting podocytes. J Renin Angiotensin Aldosterone Syst. 2014;15:177–189. doi:10.1177/147032031246612723223090
  • HuangF, WangQ, MaX, WuL, GuoF, QinG. Valsartan inhibits amylin-induced podocyte damage. Microvasc Res. 2016;106:101–109. doi:10.1016/j.mvr.2016.04.00727102209
  • KleinRR, BourdonDM, CostalesCL, et al. Direct activation of human phospholipase C by its well known inhibitor u73122. J Biol Chem. 2011;286:12407–12416. doi:10.1074/jbc.M110.19178321266572
  • TozziA, DuranteV, BastioliG, et al. Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson’s disease. Neurobiol Dis. 2018;118:1–8. doi:10.1016/j.nbd.2018.06.00829908325
  • WangS, ChenC, SuK, et al. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway. Ren Fail. 2016;38:268–275. doi:10.3109/0886022X.2015.111789626652313
  • ZhouG, CheungAK, LiuX, HuangY. Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci. 2014;126:707–720. doi:10.1042/CS2013022324195695
  • GaoF, YaoM, CaoY, LiuS, LiuQ, DuanH. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway. Int J Mol Med. 2016;37:1328–1336. doi:10.3892/ijmm.2016.252526985716
  • WangQ, LiR, LiW, WangL. Protective effect of valsartan on podocyte injury in rats with diabetic nephropathy. Am J Life Sci. 2018;6:47–51. doi:10.11648/j.ajls.20180603.12
  • ZhangJ, HuX, WangS, ZhangY, YangH. Protective effects of low-dose rapamycin combined with valsartan on podocytes of diabetic rats. Int J Clin Exp Med. 2015;8:13275.26550253
  • SchlondorffJ, Del CaminoD, CarrasquilloR, et al. TRPC6 m utations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell P Hysiol. 2009;296(3):C558–C569. doi:10.1152/ajpcell.00077.2008
  • ClarkK, MiddelbeekJ, van LeeuwenFN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol. 2008;87(8–9):63l–640. doi:10.1016/j.ejcb.2008.01.009