422
Views
39
CrossRef citations to date
0
Altmetric
Original Research

Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles

Pages 823-832 | Published online: 26 Feb 2020

References

  • KohWJ, Abu-RustumNR, BeanS, et al. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2019;17(1):64–84.30659131
  • LuoCL, LiuYQ, WangP, et al. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother. 2016;82:595–605. doi:10.1016/j.biopha.2016.05.02927470402
  • YuanYG, GurunathanS. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomedicine. 2017;12:6537–6558. doi:10.2147/IJN.S12528128919753
  • LiF, ZhaoC, WangL. Molecular-targeted agents combination therapy for cancer: developments and potentials. Int J Cancer. 2014;134(6):1257–1269. doi:10.1002/ijc.v134.623649791
  • RosenVM, GuerraI, McCormackM, et al. Systematic review and network meta-analysis of bevacizumab plus first-line topotecan-paclitaxel or cisplatin-paclitaxel versus non-bevacizumab-containing therapies in persistent, recurrent, or metastatic cervical cancer. Int J Gynecol Cancer. 2017;27(6):1237–1246. doi:10.1097/IGC.000000000000100028448304
  • RamzyL, NasrM, MetwallyAA, AwadGAS. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci. 2017;104:273–292. doi:10.1016/j.ejps.2017.04.00528412485
  • WangS, MengX, DongY. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol. 2017;50(4):1330–1340. doi:10.3892/ijo.2017.389028259944
  • WangG, WangZ, LiC, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–284. doi:10.1016/j.biopha.2018.06.13729966971
  • SongZ, ShiY, HanQ, DaiG. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2018;105:18–26. doi:10.1016/j.biopha.2018.05.09529843041
  • LiuJ, ChengH, HanL, et al. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2018;12:3199–3209. doi:10.2147/DDDT.S172199
  • ZhengG, ZhengM, YangB, FuH, LiY. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother. 2019;116:109006. doi:10.1016/j.biopha.2019.10900631152925
  • LuoM, ChengW, ZengX, MeiL, LiuG, DengW. Folic acid-functionalized black phosphorus quantum dots for targeted chemo-photothermal combination cancer therapy. Pharmaceutics. 2019;11:5. doi:10.3390/pharmaceutics11050242
  • HamiduA, MokrishA, MansorR, et al. Modified methods of nanoparticles synthesis in pH-sensitive nano-carriers production for doxorubicin delivery on MCF-7 breast cancer cell line. Int J Nanomedicine. 2019;14:3615–3627. doi:10.2147/IJN.S19083031190815
  • YuW, ZhangN, LiC. Saccharide modified pharmaceutical nanocarriers for targeted drug and gene delivery. Curr Pharm Des. 2009;15(32):3826–3836. doi:10.2174/13816120978964954719925431
  • Abd EllahNH, AbouelmagdSA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 2017;14(2):201–214. doi:10.1080/17425247.2016.121323827426638
  • PourjavadiA, TehraniZM, MoghanakiAA. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine. Pharm Res. 2016;33(2):417–432. doi:10.1007/s11095-015-1799-726438181
  • ZhangG, LiuF, JiaE, JiaL, ZhangY. Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Drug Deliv. 2016;23(4):1393–1397. doi:10.3109/10717544.2015.105405226165422
  • XuL, BaiQ, ZhangX, YangH. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release. 2017;252:73–82. doi:10.1016/j.jconrel.2017.02.02328235591
  • LiL, TaoR, SongM. Fabrication of self-assembled folate-biotin-quaternized starch nanoparticles as co-carrier of doxorubicin and siRNA. J Biomater Appl. 2017;32(5):587–597. doi:10.1177/088532821773718729073804
  • MaZ, HuP, GuoC, et al. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy. Int J Nanomedicine. 2019;14:5527–5540. doi:10.2147/IJN.S20864931413561
  • FathiM, ZangabadPS, AghanejadA, BararJ, Erfan-NiyaH, OmidiY. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib. Carbohydr Polym. 2017;172:130–141. doi:10.1016/j.carbpol.2017.05.00728606519
  • ShaoY, LuoW, GuoQ, LiX, ZhangQ, LiJ. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–2055. doi:10.2147/DDDT.S202818
  • JiJ, ZuoP, WangYL. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res Lett. 2015;10(1):453. doi:10.1186/s11671-015-1162-226608536
  • ZhangX, LiuY, KimYJ, MacJ, ZhuangR, WangP. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Adv. 2017;7(32):19685–19693. doi:10.1039/C7RA01100H28603607
  • WangY, WangL, ChenG, GongS. Carboplatin-complexed and cRGD-conjugated unimolecular nanoparticles for targeted ovarian cancer therapy. Macromol Biosci. 2017;17:5. doi:10.1002/mabi.v17.5
  • GuoS, ZhangY, WuZ, et al. Synergistic combination therapy of lung cancer: cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-demethylnobiletin. Biomed Pharmacother. 2019;118:109225. doi:10.1016/j.biopha.2019.10922531325705
  • ShuklaRS, JainA, ZhaoZ, ChengK. Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomedicine. 2016;12(5):1323–1334. doi:10.1016/j.nano.2016.02.00326970028
  • JainA, BarveA, ZhaoZ, et al. Targeted delivery of an siRNA/PNA hybrid nanocomplex reverses carbon tetrachloride‐induced liver fibrosis. Adv Therapeutic. 2019;2(8):1900046.
  • PoonC, DuanX, ChanC, HanW, LinW. Nanoscale coordination polymers codeliver carboplatin and gemcitabine for highly effective treatment of platinum-resistant ovarian cancer. Mol Pharm. 2016;13(11):3665–3675. doi:10.1021/acs.molpharmaceut.6b0046627712076
  • ChouTC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–681. doi:10.1124/pr.58.3.1016968952
  • MoJ, WangL, HuangX, et al. Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis. Nanoscale. 2017;9(35):13142–13152. doi:10.1039/C7NR04473A28849826
  • ZhangY, YangC, WangW, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225. doi:10.1038/srep2122526876480
  • WangWY, CaoYX, ZhouX, WeiB. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy. Drug Des Devel Ther. 2019;13:2205–2213. doi:10.2147/DDDT.S205787
  • SukJS, XuQ, KimN, HanesJ, EnsignLM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi:10.1016/j.addr.2015.09.01226456916
  • DongH, PangL, CongH, ShenY, YuB. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv. 2019;26(1):416–432. doi:10.1080/10717544.2019.158842430929527
  • HadinotoK, SundaresanA, CheowWS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3Pt A):427–443. doi:10.1016/j.ejpb.2013.07.00223872180
  • HongST, LinH, WangCS, et al. Improving the anticancer effect of afatinib and microRNA by using lipid polymeric nanoparticles conjugated with dual pH-responsive and targeting peptides. J Nanobiotechnology. 2019;17(1):89. doi:10.1186/s12951-019-0519-631426807
  • MacedoLB, Nogueira-LibrelottoDR, de VargasJ, ScheerenLE, VinardellMP, RolimCMB. Poly (ɛ-Caprolactone) nanoparticles with pH-responsive behavior improved the in vitro antitumor activity of methotrexate. AAPS Pharm Sci Tech. 2019;20(5):165. doi:10.1208/s12249-019-1372-5
  • WanX, LiuC, LinY, FuJ, LuG, LuZ. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 2019;26(1):470–480. doi:10.1080/10717544.2019.157680130957572
  • YangT, DuG, CuiY, et al. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int J Nanomedicine. 2019;14:1997–2010. doi:10.2147/IJN.S19317030962684
  • TangH, ChenH, JiaY, et al. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int J Nanomedicine. 2017;12:6937–6947. doi:10.2147/IJN.S14140729075112
  • JiaL, JiaN, GaoY, et al. Multi-modulation of doxorubicin resistance in breast cancer cells by Poly(l-histidine)-based multifunctional micelles. Pharmaceutics. 2019;11:8. doi:10.3390/pharmaceutics11080385
  • TanS, WangG. Redox-responsive and pH-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo. Drug Des Devel Ther. 2017;11:3519–3529. doi:10.2147/DDDT
  • GaoZ, LiZ, YanJ, WangP. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther. 2017;11:2595–2604. doi:10.2147/DDDT.S140797
  • YangF, LiA, LiuH, ZhangH. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther. 2018;12:3321–3333. doi:10.2147/DDDT
  • WangH, SunG, ZhangZ, OuY. Transcription activator, hyaluronic acid and tocopheryl succinate multi-functionalized novel lipid carriers encapsulating etoposide for lymphoma therapy. Biomed Pharmacother. 2017;91:241–250. doi:10.1016/j.biopha.2017.04.10428460227
  • LiS, WangL, LiN, LiuY, SuH. Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother. 2017;95:548–555. doi:10.1016/j.biopha.2017.08.09028869892