114
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, , , & show all
Pages 1191-1202 | Published online: 19 Mar 2020

References

  • SimonneauG, MontaniD, CelermajerDS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):Jan. doi:10.1183/13993003.01913-2018
  • HumbertM, GuignabertC, BonnetS, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1):1801887. doi:10.1183/13993003.01887-201830545970
  • SitbonO, Gomberg-maitlandM, GrantonJ, et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur Respir J. 2019;53(1):Jan. doi:10.1183/13993003.01908-2018
  • ZhangH, LuiKO, ZhouB. Endocardial cell plasticity in cardiac development, diseases and regeneration. Circ Res. 2018;122(5):774–789. doi:10.1161/CIRCRESAHA.117.31213629496799
  • RanchouxB, AntignyF, Rucker-martinC, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131(11):1006–1018. doi:10.1161/CIRCULATIONAHA.114.00875025593290
  • RanchouxB, HarveyLD, AyonRJ, et al. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ. 2018;8(1):2045893217752912. doi:10.1177/204589321775291229283043
  • WenJ, XuB, SunY, et al. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res. 2019;146:104308. doi:10.1016/j.phrs.2019.10430831181335
  • WangJS, HuangY, ZhangS, et al. A protective role of paeoniflorin in fluctuant hyperglycemia-induced vascular endothelial injuries through antioxidative and anti-inflammatory effects and reduction of PKCbeta1. Oxid Med Cell Longev. 2019;2019:5647219.31093316
  • KongM, LiuHH, WuJ, et al. Effects of sulfur-fumigation on the pharmacokinetics, metabolites and analgesic activity of Radix Paeoniae Alba. J Ethnopharmacol. 2018;212:95–105. doi:10.1016/j.jep.2017.10.02329080828
  • YuG, WangZ, ZengS, et al. Paeoniflorin inhibits hepatocyte growth factor- (HGF-) induced migration and invasion and actin rearrangement via suppression of c-Met-mediated RhoA/ROCK signaling in glioblastoma. Biomed Res Int. 2019;2019:9053295. doi:10.1155/2019/905329530886866
  • TuJ, GuoY, HongW, et al. The regulatory effects of paeoniflorin and its derivative paeoniflorin-6ʹ-O-benzene sulfonate CP-25 on inflammation and immune diseases. Front Pharmacol. 2019;10:57. doi:10.3389/fphar.2019.0005730804784
  • WangY, CheJ, ZhaoH, TangJ, ShiG. Paeoniflorin attenuates oxidized low-density lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells. J Cell Biochem. 2019;120(6):9291–9299. doi:10.1002/jcb.v120.630548681
  • ChenJ, ZhangM, ZhuM, et al. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1alpha/NF-kappaB signaling pathway. Food Funct. 2018;9(4):2386–2397. doi:10.1039/C7FO01406F29594285
  • YuJ, ZhuX, QiX, CheJ, CaoB. Paeoniflorin protects human EA.hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway. Toxicol Lett. 2013;218(3):224–234. doi:10.1016/j.toxlet.2013.01.02823403272
  • ZhouZ, WangS, SongC, HuZ. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells. Onco Targets Ther. 2016;9:2511–2518. doi:10.2147/OTT.S10242227175085
  • FarkasD, ThompsonAAR, BhagwaniAR, et al. Toll-like receptor 3 is a therapeutic target for pulmonary hypertension. Am J Respir Crit Care Med. 2019;199(2):199–210. doi:10.1164/rccm.201707-1370OC30211629
  • YungLM, NikolicI, Paskin-flerlageSD, PearsallRS, KumarR, YuPB. A selective transforming growth factor-beta ligand trap attenuates pulmonary hypertension. Am J Respir Crit Care Med. 2016;194(9):1140–1151. doi:10.1164/rccm.201510-1955OC27115515
  • de RaafMA, SchalijI, Gomez-arroyoJ, et al. SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respir J. 2014;44(1):160–168. doi:10.1183/09031936.0020481324791833
  • XuH, CaiL, ZhangL, et al. Paeoniflorin ameliorates collagen-induced arthritis via suppressing nuclear factor-kappaB signalling pathway in osteoclast differentiation. Immunology. 2018. doi:10.1111/imm.12907
  • HuZ, QinF, GaoS, ZhenY, HuangD, DongL. Paeoniflorin exerts protective effect on radiation-induced hepatic fibrosis in rats via TGF-beta1/Smads signaling pathway. Am J Transl Res. 2018;10(3):1012–1021.29636890
  • ChenH, DongY, HeX, LiJ, WangJ. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction. Drug Des Devel Ther. 2018;12:823–836. doi:10.2147/DDDT
  • ShouQ, JinL, LangJ, et al. Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying paeoniflorin for the treatment of allergic asthma. Front Pharmacol. 2018;9:1531. doi:10.3389/fphar.2018.0153130761008
  • AndersenS, Nielsen-kudskJE, Vonk NoordegraafA, de ManFS. Right ventricular fibrosis. Circulation. 2019;139(2):269–285. doi:10.1161/CIRCULATIONAHA.118.03532630615500
  • JiY, DouYN, ZhaoQW, et al. Paeoniflorin suppresses TGF-beta mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin. 2016;37(6):794–804. doi:10.1038/aps.2016.3627133302
  • LiuX, ChenK, ZhuangY, et al. Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother. 2019;111:695–704. doi:10.1016/j.biopha.2018.12.09030611994
  • SuzukiT, CarrierEJ, TalatiMH, et al. Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L118–L126. doi:10.1152/ajplung.00296.201728935639
  • GoodRB, GilbaneAJ, TrinderSL, et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol. 2015;185(7):1850–1858. doi:10.1016/j.ajpath.2015.03.01925956031
  • CoganJD, PauciuloMW, BatchmanAP, et al. High frequency of BMPR2 exonic deletions/duplications in familial pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006;174(5):590–598. doi:10.1164/rccm.200602-165OC16728714
  • EvansJD, GirerdB, MontaniD, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med. 2016;4(2):129–137. doi:10.1016/S2213-2600(15)00544-526795434
  • TielemansB, DelcroixM, BelgeC, QuarckR. TGFbeta and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today. 2019;24(3):703–716. doi:10.1016/j.drudis.2018.12.00130529762
  • OrriolsM, Gomez-puertoMC, Ten DijkeP. BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol Life Sci. 2017;74(16):2979–2995. doi:10.1007/s00018-017-2510-428447104
  • HopperRK, MoonenJR, DieboldI, et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation. 2016;133(18):1783–1794. doi:10.1161/CIRCULATIONAHA.115.02061727045138
  • ReynoldsAM, HolmesMD, DanilovSM, ReynoldsPN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J. 2012;39(2):329–343. doi:10.1183/09031936.0018731021737550
  • MelocheJ, CourchesneA, BarrierM, et al. Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology. J Am Heart Assoc. 2013;2(1):e005157.23525442
  • AustinED, HamidR, HemnesAR, et al. BMPR2 expression is suppressed by signaling through the estrogen receptor. Biol Sex Differ. 2012;3(1):6. doi:10.1186/2042-6410-3-622348410
  • ZengY, LiuH, KangK, et al. Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep. 2015;5:12098. doi:10.1038/srep1209826166214
  • YuH, AlruwailiN, HuB, et al. Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia. Am J Physiol Lung Cell Mol Physiol. 2019;317:L569–L577. doi:10.1152/ajplung.00080.201831389735
  • ZengJ, DouY, GuoJ, WuX, DaiY. Paeoniflorin of Paeonia lactiflora prevents renal interstitial fibrosis induced by unilateral ureteral obstruction in mice. Phytomedicine. 2013;20(8–9):753–759. doi:10.1016/j.phymed.2013.02.01023535189
  • JiQ, YangL, ZhouJ, et al. Protective effects of paeoniflorin against cobalt chloride-induced apoptosis of endothelial cells via HIF-1alpha pathway. Toxicol in Vitro. 2012;26(3):455–461. doi:10.1016/j.tiv.2012.01.01622269387