144
Views
28
CrossRef citations to date
0
Altmetric
Original Research

Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/β-Catenin Signaling Pathway in STZ-Induced Diabetic Rats

ORCID Icon, , ORCID Icon, , , , , & ORCID Icon show all
Pages 527-538 | Published online: 05 Feb 2020

References

  • USRDS: the United States Renal Data System. Am J Kidney Dis. 2003;42(6 Suppl 5):1–230.
  • GnudiL, CowardRJM, LongDA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27(11):820–830. doi:10.1016/j.tem.2016.07.00227470431
  • ToyodaM, NajafianB, KimY, CaramoriML, MauerM. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56(8):2155–2160. doi:10.2337/db07-001917536064
  • PagtalunanME, MillerPL, Jumping-EagleS, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–348. doi:10.1172/JCI1191639006003
  • MaezawaY, TakemotoM, YokoteK. Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig. 2015;6(1):3–15. doi:10.1111/jdi.12255
  • AndeenNK, NguyenTQ, SteeghF, HudkinsKL, NajafianB, AlpersCE. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy. Kidney Int. 2015;88(5):1099–1107. doi:10.1038/ki.2015.27326376129
  • EidS, BoutaryS, BraychK, et al. mTORC2 signaling regulates Nox4-induced podocyte depletion in diabetes. Antioxid Redox Signal. 2016;25(13):703–719. doi:10.1089/ars.2015.656227393154
  • SweetwyneMT, GruenwaldA, NiranjanT, NishinakamuraR, StroblLJ, SusztakK. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 2015;64(12):4099–4111. doi:10.2337/db15-026026293507
  • MSM. The podocyte a potential therapeutic target in diabetic nephropathy. Curr Pharm Des. 2007;13(26):2713–2720. doi:10.2174/13816120778166295717897015
  • LiuY. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15(1):1–12. doi:10.1097/01.ASN.0000106015.29070.E714694152
  • DaiH, LiuQ, LiuB. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res. 2017;2017:2615286. doi:10.1155/2017/261528628791309
  • Anil KumarP, WelshGI, SaleemMA, MenonRK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:151. doi:10.3389/fendo.2014.0015125309512
  • K RAS, SchifferM, BöttingerEP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–233. doi:10.2337/diabetes.55.01.06.db05-089416380497
  • GuiD, WeiL, JianG, GuoY, YangJ, WangN. Notoginsenoside R1 ameliorates podocyte adhesion under diabetic condition through alpha3beta1 integrin upregulation in vitro and in vivo. Cell Physiol Biochem. 2014;34(6):1849–1862. doi:10.1159/00036638425503068
  • LiuWJ, TangHT, JiaYT, et al. Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats. Shock. 2010;34(3):314–320. doi:10.1097/SHK.0b013e3181ceede420023602
  • DuYG, WangLP, QianJW, ZhangKN, ChaiKF. Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats. Chin J Integr Med. 2016;22(12):910–917. doi:10.1007/s11655-015-2446-126712211
  • KangYS, LeeMH, SongHK, et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010;78(9):883–894. doi:10.1038/ki.2010.26320686445
  • VargheseF, BukhariAB, MalhotraR, DeA. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9(5):e96801. doi:10.1371/journal.pone.009680124802416
  • GD, FinucaneMM, LuY, et al. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980 systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 27 million participants. Lancet. 2011;378:31–40. doi:10.1016/S0140-6736(11)60679-X21705069
  • ForbesJM, FukamiK, CooperME. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes. 2007;115(2):69–84. doi:10.1055/s-2007-94972117318765
  • JerumsG, PanagiotopoulosS, PremaratneE, MacIsaacRJ. Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat Rev Nephrol. 2009;5(7):397–406. doi:10.1038/nrneph.2009.9119556994
  • ZhuWW, ChenHP, GeYC, et al. Ultrastructural changes in the glomerular filtration barrier and occurrence of proteinuria in Chinese patients with type 2 diabetic nephropathy. Diabetes Res Clin Pract. 2009;86(3):199–207. doi:10.1016/j.diabres.2009.09.00919815303
  • SuJ, LiSJ, ChenZH, et al. Evaluation of podocyte lesion in patients with diabetic nephropathy: wilms’ tumor-1 protein used as a podocyte marker. Diabetes Res Clin Pract. 2010;87(2):167–175. doi:10.1016/j.diabres.2009.10.02219969384
  • PengL, LiJ, XuY, et al. The protective effect of beraprost sodium on diabetic nephropathy by inhibiting inflammation and p38 MAPK signaling pathway in High-Fat Diet/Streptozotocin-induced diabetic rats. Int J Endocrinol. 2016;2016:1690474. doi:10.1155/2016/169047427212945
  • WatanabeM, NakashimaH, MochizukiS, et al. Amelioration of diabetic nephropathy in OLETF rats by prostaglandin I(2) analog, beraprost sodium. Am J Nephrol. 2009;30(1):1–11. doi:10.1159/00019572219158439
  • SatoN, KanekoM, TamuraM, KurumataniH. The prostacyclin analog beraprost sodium ameliorates characteristics of metabolic syndrome in obese Zucker (fatty) rats. Diabetes. 2010;59(4):1092–1100. doi:10.2337/db09-143220068136
  • OwadaA, SudaS, HataT. Effect of long-term administration of prostaglandin I(2) in incipient diabetic nephropathy. Nephron. 2002;92(4):788–796. doi:10.1159/00006544512399622
  • MundelP, KrizW. Structure and function of podocytes: an update. Anat Embryol (Berl). 1995;192(5):385–397. doi:10.1007/BF002403718546330
  • AsanumaK, MundelP. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7(4):255–259. doi:10.1007/s10157-003-0259-614712353
  • KrizW, GretzN, LemleyKV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998;54(3):687–697. doi:10.1046/j.1523-1755.1998.00044.x9734594
  • ReidyK, SusztakK. Epithelial-mesenchymal transition and podocyte loss in diabetic kidney disease. Am J Kidney Dis. 2009;54(4):590–593. doi:10.1053/j.ajkd.2009.07.00319781451
  • YamaguchiY, IwanoM, SuzukiD, et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis. 2009;54(4):653–664. doi:10.1053/j.ajkd.2009.05.00919615802
  • YingQ, WuG. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Ren Fail. 2017;39(1):474–483. doi:10.1080/0886022X.2017.131316428413908
  • LiY, KangYS, DaiC, KissLP, WenX, LiuY. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol. 2008;172(2):299–308. doi:10.2353/ajpath.2008.07005718202193
  • ChangYP, SunB, HanZ, et al. Saxagliptin Attenuates Albuminuria by Inhibiting Podocyte Epithelial- to-Mesenchymal Transition via SDF-1alpha in Diabetic Nephropathy. Front Pharmacol. 2017;8:780. doi:10.3389/fphar.2017.0078029163166
  • WuX, GaoY, XuL, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci Rep. 2017;7(1):9371. doi:10.1038/s41598-017-09907-628839221
  • CleversH, NusseR. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–1205. doi:10.1016/j.cell.2012.05.01222682243
  • DaiC, StolzDB, KissLP, MongaSP, HolzmanLB, LiuY. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol. 2009;20(9):1997–2008. doi:10.1681/ASN.200901001919628668
  • BoseM, AlmasS, PrabhakarS. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Investig Med. 2017;65(8):1093–1101. doi:10.1136/jim-2017-000456
  • GuoJ, XiaN, YangL, et al. GSK-3beta and vitamin D receptor are involved in beta-catenin and snail signaling in high glucose-induced epithelial-mesenchymal transition of mouse podocytes. Cell Physiol Biochem. 2014;33(4):1087–1096. doi:10.1159/00035867824732862
  • ZhouL, LiuY. Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015;11(9):535–545. doi:10.1038/nrneph.2015.8826055352
  • SongH, WangP, LiuJ, WangC. Panax notoginseng Preparations for Unstable Angina Pectoris: a systematic review and meta-analysis. Phytother Res. 2017;31(8):1162–1172. doi:10.1002/ptr.v31.828634988
  • GurleySB, ClareSE, SnowKP, HuA, MeyerTW, CoffmanTM. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290(1):F214–F222. doi:10.1152/ajprenal.00204.200516118394
  • ChowBSM, AllenTJ. Mouse models for studying diabetic nephropathy. Curr Protoc Mouse Biol. 2015;5(2):85–94. doi:10.1002/9780470942390.mo14019226069079