125
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Regulations of miR-183-5p and Snail-Mediated Shikonin-Reduced Epithelial-Mesenchymal Transition in Cervical Cancer Cells

, , , & ORCID Icon
Pages 577-589 | Published online: 11 Feb 2020

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.v69.130620402
  • MenderesG, BlackJ, SchwabCL, SantinAD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther. 2016;16(1):83–98. doi:10.1586/14737140.2016.112110826568261
  • ShibataT, LieblongBJ, SasagawaT, NakagawaM. The promise of combining cancer vaccine and checkpoint blockade for treating HPV-related cancer. Cancer Treat Rev. 2019;78:8–16. doi:10.1016/j.ctrv.2019.07.00131302573
  • ZhangX, CuiJH, MengQQ, LiSS, ZhouW, XiaoS. Advance in anti-tumor mechanisms of shikonin, alkannin and their derivatives. Mini Rev Med Chem. 2018;18(2):164–172. doi:10.2174/138955751766617022811480928245783
  • GuoN, MiaoR, GaoX, et al. Shikonin inhibits proliferation and induces apoptosis in glioma cells via downregulation of CD147. Mol Med Rep. 2019;19(5):4335–4343. doi:10.3892/mmr.2019.1010130942433
  • ZhangS, GaoQ, LiW, et al. Shikonin inhibits cancer cell cycling by targeting Cdc25s. BMC Cancer. 2019;19(1):20. doi:10.1186/s12885-018-5220-x30616572
  • XuJ, KoizumiK, LiuM, et al. Shikonin induces an antitumor effect on murine mammary cancer via p38dependent apoptosis. Oncol Rep. 2019;41(3):2020–2026. doi:10.3892/or.2019.696630664166
  • LiuY, KangX, NiuG, et al. Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artif Cells Nanomed Biotechnol. 2019;47(1):626–635. doi:10.1080/21691401.2019.157522930873870
  • HsiehYS, LiaoCH, ChenWS, PaiJT, WengMS. Shikonin inhibited migration and invasion of human lung cancer cells via Suppression of c-Met-Mediated Epithelial-to-Mesenchymal transition. J Cell Biochem. 2017;118(12):4639–4651. doi:10.1002/jcb.2612828485480
  • ZhaiT, HeiZ, MaQ, et al. Shikonin induces apoptosis and G0/G1 phase arrest of gallbladder cancer cells via the JNK signaling pathway. Oncol Rep. 2017;38(6):3473–3480. doi:10.3892/or.2017.603829039581
  • BoulosJC, RahamaM, HegazyMF, EfferthT. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019;459:248–267. doi:10.1016/j.canlet.2019.04.03331132429
  • WangZ, YinJ, LiM, et al. Combination of shikonin with paclitaxel overcomes multidrug resistance in human ovarian carcinoma cells in a P-gp-independent manner through enhanced ROS generation. Chin Med. 2019;14:7. doi:10.1186/s13020-019-0231-330911326
  • ChenY, ChenZY, ChenL, et al. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3beta-regulated suppression of beta-catenin signaling. Biochem Pharmacol. 2019;166:33–45. doi:10.1016/j.bcp.2019.05.00131071331
  • WuZ, WuLJ, LiLH, TashiroS, OnoderaS, IkejimaT. Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res. 2004;6(3):155–166. doi:10.1080/102860203200016962215224412
  • LuD, QianJ, LiW, FengQ, PanS, ZhangS. beta-hydroxyisovaleryl-shikonin induces human cervical cancer cell apoptosis via PI3K/AKT/mTOR signaling. Oncol Lett. 2015;10(6):3434–3442. doi:10.3892/ol.2015.376926788147
  • HanHW, ZhengCS, ChuSJ, et al. The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF-1alpha-mediated apoptosis. Biomed Pharmacother. 2018;97:656–666. doi:10.1016/j.biopha.2017.10.15929101810
  • RupaimooleR, SlackFJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi:10.1038/nrd.2016.24628209991
  • LiX, XuM, DingL, TangJ. MiR-27a: a novel biomarker and potential therapeutic target in tumors. J Cancer. 2019;10(12):2836–2848. doi:10.7150/jca.3136131258791
  • LongL, ZhangX, BaiJ, LiY, WangX, ZhouY. Tissue-specific and exosomal miRNAs in lung cancer radiotherapy: from regulatory mechanisms to clinical implications. Cancer Manag Res. 2019;11:4413–4424. doi:10.2147/CMAR.S19896631191004
  • DingL, LanZ, XiongX, et al. The dual role of MicroRNAs in colorectal cancer progression. Int J Mol Sci. 2018;19(9):2791. doi:10.3390/ijms19092791
  • PanX, ChenY, ShenY, TantaiJ. Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis. 2019;10(6):429. doi:10.1038/s41419-019-1660-831160576
  • LuZ, HeQ, LiangJ, et al. miR-31-5p is a potential circulating biomarker and therapeutic target for oral cancer. Mol Ther Nucleic Acids. 2019;16:471–480. doi:10.1016/j.omtn.2019.03.01231051332
  • HeZ, RuanX, LiuX, et al. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J Exp Clin Cancer Res. 2019;38(1):65. doi:10.1186/s13046-019-1065-730736838
  • XiongY, ZhangJ, SongC. CircRNA ZNF609 functions as a competitive endogenous RNA to regulate FOXP4 expression by sponging miR-138-5p in renal carcinoma. J Cell Physiol. 2019;234(7):10646–10654. doi:10.1002/jcp.v234.730478938
  • ZhuJ, ShiH, LiuH, WangX, LiF. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget. 2017;8(39):65253–65264. doi:10.18632/oncotarget.1822429029428
  • OuL, WangD, ZhangH, YuQ, HuaF. Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res. 2018;26(3):401–410. doi:10.3727/096504017X1501720904261028797320
  • BertiFCB, Salviano-SilvaA, BeckertHC, de OliveiraKB, CipollaGA, MalheirosD. From squamous intraepithelial lesions to cervical cancer: circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188306. doi:10.1016/j.bbcan.2019.08.00131398380
  • QureshiR, AroraH, RizviMA. EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer Lett. 2015;356(2Pt B):321–331. doi:10.1016/j.canlet.2014.09.02125281477
  • SamatovTR, TonevitskyAG, SchumacherU. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer. 2013;12(1):107. doi:10.1186/1476-4598-12-10724053443
  • KentCN, Guttilla ReedIK. Regulation of epithelial-mesenchymal transition in endometrial cancer: connecting PI3K, estrogen signaling, and microRNAs. Clin Transl Oncol. 2016;18(11):1056–1061. doi:10.1007/s12094-016-1492-226856598
  • KalluriR, WeinbergRA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428. doi:10.1172/JCI3910419487818
  • WuZ, WuLJ, TashiroS, OnoderaS, IkejimaT. Phosphorylated extracellular signal-regulated kinase up-regulated p53 expression in shikonin-induced HeLa cell apoptosis. Chin Med J (Engl). 2005;118(8):671–677.15899123
  • GalvanJA, ZlobecI, WartenbergM, et al. Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br J Cancer. 2015;112(12):1944–1950. doi:10.1038/bjc.2015.17725989272
  • LinY, DongC, ZhouBP. Epigenetic regulation of EMT: the Snail story. Curr Pharm Des. 2014;20(11):1698–1705. doi:10.2174/1381612811319999051223888971
  • ZhengS, ZhongYF, TanDM, XuY, ChenHX, WangD. miR-183-5p enhances the radioresistance of colorectal cancer by directly targeting ATG5. J Biosci. 2019;44(4). doi:10.1007/s12038-019-9918-y
  • LiY, HeS, ZhanY, et al. microRNA-183-3p inhibits progression of human prostate cancer by downregulating high-mobility group nucleosome binding domain 5. DNA Cell Biol. 2019;38(8):840–848. doi:10.1089/dna.2019.464231314587
  • YangCL, ZhengXL, YeK, et al. MicroRNA-183 acts as a tumor suppressor in human non-small cell lung cancer by down-regulating MTA1. Cell Physiol Biochem. 2018;46(1):93–106. doi:10.1159/00048841229587281
  • ZhangW, ZhangM, LiuL, JinD, WangP, HuJ. MicroRNA-183-5p inhibits aggressiveness of cervical cancer cells by targeting integrin subunit beta 1 (ITGB1). Med Sci Monit. 2018;24:7137–7145. doi:10.12659/MSM.91029530293085
  • YanH, SunBM, ZhangYY, et al. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int J Mol Med. 2018;42(5):2469–2480. doi:10.3892/ijmm.2018.385330226564
  • Al KhatibAM, StepanAE, MargaritescuC, SimionescuC, CiureaRN. E-cadherin and snail immunoexpression in colorectal adenocarcinomas. Curr Health Sci J. 2019;45(2):204–209. doi:10.12865/CHSJ.45.02.1231624649
  • LinX, ZhengL, SongH, et al. Effects of microRNA-183 on epithelial-mesenchymal transition, proliferation, migration, invasion and apoptosis in human pancreatic cancer SW1900 cells by targeting MTA1. Exp Mol Pathol. 2017;102(3):522–532. doi:10.1016/j.yexmp.2017.05.00928506766
  • MengF, ZhangL. miR-183-5p functions as a tumor suppressor in lung cancer through PIK3CA inhibition. Exp Cell Res. 2019;374(2):315–322. doi:10.1016/j.yexcr.2018.12.00330528264
  • WangH, MaZ, LiuX, et al. MiR-183-5p is required for non-small cell lung cancer progression by repressing PTEN. Biomed Pharmacother. 2019;111:1103–1111. doi:10.1016/j.biopha.2018.12.11530841423
  • LiH, PanX, GuiY, et al. Upregulation of miR-183-5p predicts worse survival in patients with renal cell cancer after surgery. Cancer Biomark. 2019;24(2):153–158. doi:10.3233/CBM-18204730689558
  • BanerjeeP, SurendranH, ChowdhuryDR, PrabhakarK, PalR. Metformin mediated reversal of epithelial to mesenchymal transition is triggered by epigenetic changes in E-cadherin promoter. J Mol Med (Berl). 2016;94(12):1397–1409. doi:10.1007/s00109-016-1455-727534967
  • HuY, ZhengY, DaiM, et al. Snail2 induced E-cadherin suppression and metastasis in lung carcinoma facilitated by G9a and HDACs. Cell Adh Migr. 2019;13(1):285–292. doi:10.1080/19336918.2019.163868931271097
  • ZhangJ, YangM, LiD, et al. Homeobox C8 is a transcriptional repressor of E-cadherin gene expression in non-small cell lung cancer. Int J Biochem Cell Biol. 2019;114:105557. doi:10.1016/j.biocel.2019.06.00531202850
  • ZhaoX, ZhuY, HuJ, et al. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep. 2018;8(1):14517. doi:10.1038/s41598-018-31615-y30266938
  • KimHJ, HwangKE, ParkDS, et al. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 2017;15(1):123. doi:10.1186/s12967-017-1223-728569199
  • NiF, HuangX, ChenZ, QianW, TongX. Shikonin exerts antitumor activity in Burkitt’s lymphoma by inhibiting C-MYC and PI3K/AKT/mTOR pathway and acts synergistically with doxorubicin. Sci Rep. 2018;8(1):3317. doi:10.1038/s41598-018-21570-z29463831