350
Views
30
CrossRef citations to date
0
Altmetric
Original Research

Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives

, , , ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 2165-2178 | Published online: 03 Jun 2020

References

  • SadiqA, ZebA, UllahF, et al. Chemical characterization, analgesic, antioxidant, and anticholinesterase potentials of essential oils from Isodon rugosus wall. ex. Benth. Front Pharmacol. 2018;9.29422861
  • AyazM, SadiqA, JunaidM, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci. 2019;11:155. doi:10.3389/fnagi.2019.0015531293414
  • OvaisM, ZiaN, AhmadI, et al. phyto-therapeutic and nanomedicinal approach to cure Alzheimer disease: present status and future opportunities. Front Aging Neurosci. 2018;10:284. doi:10.3389/fnagi.2018.0028430405389
  • ZafarR. et al. Zinc metal carboxylates as potential anti-Alzheimer’s candidate: in-vitro anticholinesterase, antioxidant and molecular docking studies. J Biomol Struct Dyn. 2020;1–15. doi:10.1080/07391102.2020.1724569
  • LovemanE, GreenC, KirbyJ, et al. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease. Health Tech Assess. 2006;10. doi:10.3310/hta10010
  • AyazM, SadiqA, JunaidM, UllahF, SubhanF, AhmedJ. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci. 2017;9:168. doi:10.3389/fnagi.2017.0016828611658
  • AyazM, SadiqA, JunaidM, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci. 2019;11.30837862
  • AyazM, UllahF, SadiqA, KimMO, AliT. Natural products-based drugs: potential therapeutics against Alzheimer’s disease and other neurological disorders. Front Pharmacol. 2019;10:1417.31849668
  • AhmadS, ZebA, AyazM, MurkovicM. Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. Leaves. Eur Food Res Tech. 2020;1–12.
  • JabeenM, et al. SAR based in-vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives. Steroids. 2020;158:108599. doi:10.1016/j.steroids.2020.10859932126219
  • AyazM, JunaidM, UllahF, et al. Anti-Alzheimer’s studies on β-sitosterol isolated from polygonum hydropiper L. Front Pharmacol. 2017;8:697. doi:10.3389/fphar.2017.0069729056913
  • SultanaN, SarfrazM, TanoliST, et al. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2, 3-dihydroquinazolin-4 (1H)-one as inhibitors of cholinesterases. Bioorg Chem. 2017;72:256–267. doi:10.1016/j.bioorg.2017.04.00928495556
  • AyazM, JunaidM, UllahF, et al. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from polygonum hydropiper L: a preliminary anti-Alzheimer’s study. Lipids Health Dis. 2015;14(1):141. doi:10.1186/s12944-015-0145-826530857
  • AliM, MuhammadS, ShahMR, et al. Neurologically potent molecules from crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Front Pharmacol. 2017;8:327. doi:10.3389/fphar.2017.0032728638340
  • YiannopoulouKG, PapageorgiouSG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6(1):19–33. doi:10.1177/175628561246167923277790
  • ShahS, MuhammadM, SadiqA, ShahSMH, UllahF. Antioxidant, total phenolic contents and antinociceptive potential of teucrium stocksianum methanolic extract in different animal models. BMC Complement Altern Med. 2014;14(1):181. doi:10.1186/1472-6882-14-18124893601
  • AyazM, OvaisM, AhmadI, SadiqA, KhalilAT, UllahF. Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. Metal Nanoparticles Drug Delivery Diagn Appl. 2020;31–42.
  • SarfrazM, SultanaN, RashidU, AkramMS, SadiqA, TariqMI. Synthesis, biological evaluation and docking studies of 2, 3-dihydroquinazolin-4 (1H)-one derivatives as inhibitors of cholinesterases. Bioorg Chem. 2017;70:237–244. doi:10.1016/j.bioorg.2017.01.00428126287
  • AhmadG, et al. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl) thiophene-2-carboxamide analogs. Bioorg Chem. 2019;92:103216. doi:10.1016/j.bioorg.2019.10321631491567
  • EruygurN, UcarE, AkpulatHA, ShahsavariK, SafaviSM, KahriziD. In vitro antioxidant assessment, screening of enzyme inhibitory activities of methanol and water extracts and gene expression in hypericum lydium. Mol Biol Rep. 2019;1–9.
  • ZohraT, OvaisM, KhalilAT, QasimM, AyazM, ShinwariZK. Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat Prod Res. 2019;33(1):136–142. doi:10.1080/14786419.2018.143742829430965
  • RahimH, SadiqA, KhanS, et al. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Int J Nanomed. 2019;14:6287. doi:10.2147/IJN.S210548
  • AslamH, KhanA-U, NaureenH, AliF, UllahF, SadiqA. Potential application of Conyza canadensis (L) Cronquist in the management of diabetes: in vitro and in vivo evaluation. Trop J Pharm Res. 2018;17(7):1287–1293. doi:10.4314/tjpr.v17i7.9
  • de MeloEB, da Silveira GomesA, CarvalhoI. α-and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron. 2006;62(44):10277–10302. doi:10.1016/j.tet.2006.08.055
  • BarutB, BarutEN, EnginS, ÖzelA, SezenFS. Investigation of the antioxidant, α-Glucosidase inhibitory, anti-inflammatory, and DNA protective properties of vaccinium arctostaphylos L. Turkish J Pharm Sci. 2019;16:2. doi:10.4274/tjps.galenos.2018.28247
  • JanMS, AhmadS, HussainF, et al. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2, 5-dione derivatives as multitarget anti-inflammatory agents. Eur J Med Chem. 2020;186:111863. doi:10.1016/j.ejmech.2019.11186331740050
  • HussainF, KhanZ, JanMS, et al. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2, 5-dione and thiazolidine-2, 4-dione derivatives. Bioorg Chem. 2019;91:103128. doi:10.1016/j.bioorg.2019.10312831369977
  • LovićJ, Avramov IvićM, BĐB, LađarevićJ, MijinD. Voltammetric investigation of inclusion complexes of the selected succinimides with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. Acta Chim Slov. 2019;66:182–189. doi:10.17344/acsi.2018.4767
  • AhmadA, UllahF, SadiqA, et al. Pharmacological evaluation of aldehydic-pyrrolidinedione against HCT-116, MDA-MB231, NIH/3T3, MCF-7 cancer cell lines, antioxidant and enzyme inhibition studies. Drug Des Devel Ther. 2019;13:4185. doi:10.2147/DDDT.S226080
  • BibiA, ShahT, SadiqA, KhalidN, UllahF, IqbalA. l-Isoleucine-catalyzed michael synthesis of N-Alkylsuccinimide derivatives and their antioxidant activity assessment. Russian J Organic Chem. 2019;55(11):1749–1754. doi:10.1134/S1070428019110174
  • SadiqA, MahmoodF, UllahF, et al. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J. 2015;9(1):31. doi:10.1186/s13065-015-0107-226064188
  • MahmoodF, JanMS, AhmadS, et al. Ethyl 3-oxo-2-(2, 5-dioxopyrrolidin-3-yl) butanoate derivatives: anthelmintic and cytotoxic potentials, antimicrobial, and docking studies. Front Chem. 2017;5:119. doi:10.3389/fchem.2017.0011929312926
  • WangF, YinH, YueC, ChengS, HongM. Syntheses, structural characterization, in vitro cytotoxicities and DNA-binding properties of triphenylantimony di (N-oxy phthalimide) and di (N-oxy succinimide) complexes. J Organomet Chem. 2013;738:35–40. doi:10.1016/j.jorganchem.2013.03.046
  • PatilM, RajputS. Succinimides: synthesis, reaction, and biological activity. Int J Pharm Pharm Sci. 2014;6(11):8–14.
  • JanMS, ShahidM, AhmadS, et al. Synthesis of pyrrolidine-2, 5-dione based anti-inflammatory drug: in vitro COX-2, 5-LOX inhibition and in vivo anti-inflammatory studies. Latin Am J Pharm. 2019;38(11):2287–2294.
  • SelvakumarV, DuraipandiS, DevdasS. Synthesis and psychopharmacological activities of some succinimide mannich bases. J Pharm Res. 2011;4:3168–3170.
  • NugentTC, NegruDE, El‐ShazlyM, et al. Sequential reductive amination‐hydrogenolysis: a one‐pot synthesis of challenging chiral primary amines. Adv Synth Catal. 2011;353(11‐12):2085–2092.
  • NugentTC, BibiA, SadiqA, Mohammad ShoaibM, UmarN, TehraniFN. Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries. Org Biomol Chem. 2012;10(46):9287–9294.23104278
  • IftikharF, YaqoobF, TabassumN, et al. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg Chem. 2018;80:99–111. doi:10.1016/j.bioorg.2018.05.02629894893
  • TanoliST, RamzanM, HassanA, et al. Design, synthesis and bioevaluation of tricyclic fused ring system as dual binding site acetylcholinesterase inhibitors. Bioorg Chem. 2019;83:336–347. doi:10.1016/j.bioorg.2018.10.03530399465
  • NugentTC, SadiqA, BibiA, et al. Noncovalent bifunctional organocatalysts: powerful tools for contiguous quaternary‐tertiary stereogenic carbon formation, scope, and origin of enantioselectivity. Chem a Eur J. 2012;18(13):4088–4098. doi:10.1002/chem.201103005
  • UllahF, AyazM, SadiqA, et al. Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of iris germanica var; florentina. Nat Prod Res. 2016;30(12):1440–1444. doi:10.1080/14786419.2015.105758526166432
  • AhmadS, IftikharF, UllahF, SadiqA, RashidU. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg Chem. 2016;69:91–101. doi:10.1016/j.bioorg.2016.10.00227750058
  • ShahS, ShahSMM, AhmadZ, et al. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of cornus macrophylla wall bark collected from the North-West of Pakistan. Pak J Pharm Sci. 2015;28(1):23–28.25553682
  • JabeenM, AhmadS, ShahidK, et al. Ursolic acid hydrazide based organometallic complexes: synthesis, characterization, antibacterial, antioxidant, and docking studies. Front Chem. 2018;6:55. doi:10.3389/fchem.2018.0005529594100
  • ZebA, SadiqA, UllahF, AhmadS, AyazM. Investigations of anticholinesterase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus. Biol Res. 2014;47(1):76. doi:10.1186/0717-6287-47-7625723481
  • ZafarR, UllahH, ZahoorM, et al. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complement Altern Med. 2019;19(1):296. doi:10.1186/s12906-019-2679-131694704
  • KumkraiP, WeeranantanapanO, ChudapongseN. Antioxidant, alpha-glucosidase inhibitory activity and sub-chronic toxicity of Derris reticulata extract: its antidiabetic potential. BMC Complement Altern Med. 2015;15:35. doi:10.1186/s12906-015-0552-425887793
  • FarooqU, NazS, ShamsA, et al. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species polygonum barbatum as anticancer compounds. Biol Res. 2019;52(1):1. doi:10.1186/s40659-018-0209-030612577
  • JabeenM, ChoudhryMI, MianaGA, et al. Synthesis, pharmacological evaluation and docking studies of progesterone and testosterone derivatives as anticancer agents. Steroids. 2018;136:22–31. doi:10.1016/j.steroids.2018.05.00829772243
  • SramekJJ, FrackiewiczEJ, CutlerNR. Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin Investig Drugs. 2000;9(10):2393–2402. doi:10.1517/13543784.9.10.2393
  • CarreiroEP, LouroP, AdrianoG, et al. 3-hydroxypyrrolidine and (3, 4)-dihydroxypyrrolidine derivatives: inhibition of rat intestinal α-glucosidase. Bioorg Chem. 2014;54:81–88. doi:10.1016/j.bioorg.2014.04.00724859324
  • RosenWG, MohsRC, DavisKL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984.
  • ButterfieldDA, HensleyK, HarrisM, MattsonM, CarneyJ. β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer′ s disease. Biochem Biophys Res Commun. 1994;200(2):710–715. doi:10.1006/bbrc.1994.15088179604
  • WolffS. Diabetes mellitus and free radicals: free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull. 1993;49(3):642–652. doi:10.1093/oxfordjournals.bmb.a0726378221029
  • AdeghateE, SchattnerP, DunnE. An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci. 2006;1084(1):1–29. doi:10.1196/annals.1372.02917151290
  • ShimabukuroM, HigaN, ChinenI, YamakawaK, TakasuN. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91(3):837–842. doi:10.1210/jc.2005-156616368744