236
Views
45
CrossRef citations to date
0
Altmetric
Original Research

Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Improves Spinal Cord Function After Injury in Rats by Activating Autophagy

, , , , &
Pages 1621-1631 | Published online: 29 Apr 2020

References

  • McDonaldJW, SadowskyC. Spinal-cord injury. Lancet. 2002;359(9304):417–425. doi:10.1016/S0140-6736(02)07603-111844532
  • EsrefogluM. Role of stem cells in repair of liver injury: experimental and clinical benefit of transferred stem cells on liver failure. World J Gastroenterol. 2013;19(40):6757–6773. doi:10.3748/wjg.v19.i40.675724187451
  • LiH, WangC, HeT, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics. 2019;9(7):2017–2035. doi:10.7150/thno.2940031037154
  • FengY, JuY, CuiJ, WangL. Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats. Mol Med Rep. 2017;16(1):654–660. doi:10.3892/mmr.2017.661928560414
  • VahidiniaZ, Azami TamehA, NejatiM, et al. The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathol Res Pract. 2019;215(9):152519. doi:10.1016/j.prp.2019.15251931272760
  • BalsamLB, WagersAJ, ChristensenJL, KofidisT, WeissmanIL, RobbinsRC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–673. doi:10.1038/nature0246015034594
  • RatajczakMZ, JadczykT, PedziwiatrD, WojakowskiW. New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn. 2014;124(7–8):417–426. doi:10.20452/pamw.235524956404
  • TheryC, WitwerKW. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.30637094
  • ZhaoJ, LiX, HuJ, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–1216. doi:10.1093/cvr/cvz04030753344
  • XuR, ZhangF, ChaiR, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23(11):7617–7631. doi:10.1111/jcmm.1463531557396
  • LiC, JiaoG, WuW, et al. Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/beta-catenin signaling pathway. Cell Transplant. 2019;28:963689719870999.
  • MizushimaN, KomatsuM. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741. doi:10.1016/j.cell.2011.10.02622078875
  • SekiguchiA, KannoH, OzawaH, YamayaS, ItoiE. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma. 2012;29(5):946–956. doi:10.1089/neu.2011.191921806471
  • HeM, DingY, ChuC, TangJ, XiaoQ, LuoZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A. 2016;113(40):11324–11329. doi:10.1073/pnas.161128211327638205
  • RongY, LiuW, ZhouZ, et al. Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/beta-catenin signaling pathway. Brain Res Bull. 2019;148:91–99. doi:10.1016/j.brainresbull.2019.03.01430940474
  • Abbasi-MalatiZ, RoushandehAM, KuwaharaY, RoudkenarMH. Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep. 2018;14(4):484–499. doi:10.1007/s12015-018-9817-x29687338
  • WuQ, WangQ, LiZ, et al. Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death Dis. 2018;9(9):882. doi:10.1038/s41419-018-0847-830158539
  • PhinneyDG, ProckopDJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 2007;25(11):2896–2902. doi:10.1634/stemcells.2007-063717901396
  • XinH, LiY, CuiY, YangJJ, ZhangZG, ChoppM. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–1715. doi:10.1038/jcbfm.2013.15223963371
  • WangC, WangM, XuT, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65–76. doi:10.7150/thno.2976630662554
  • MilanoG, BiemmiV, LazzariniE, et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2019. doi:10.1093/cvr/cvz108
  • BaglioSR, PegtelDM, BaldiniN. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359. doi:10.3389/fphys.2012.0035922973239
  • SekiT, HidaK, TadaM, KoyanagiI, IwasakiY. Role of the bcl-2 gene after contusive spinal cord injury in mice. Neurosurgery. 2003;53(1):192–198; discussion 198. doi:10.1227/01.NEU.0000068988.28788.2C
  • SpringerJE, AzbillRD, KnappPE. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med. 1999;5(8):943–946. doi:10.1038/1138710426320
  • RongY, LiuW, LvC, et al. Neural stem cell small extracellular vesicle-based delivery of 14-3-3t reduces apoptosis and neuroinflammation following traumatic spinal cord injury by enhancing autophagy by targeting Beclin-1. Aging. 2019;11(18):7723–7745. doi:10.18632/aging.10228331563124
  • RongY, LiuW, WangJ, et al. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 2019;10(5):340. doi:10.1038/s41419-019-1571-831000697
  • GuoF, LiuX, CaiH, LeW. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol, 2018;28(1):3–13.28703923
  • SinghR, CuervoAM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13(5):495–504. doi:10.1016/j.cmet.2011.04.00421531332
  • HuangR, LiuW. Identifying an essential role of nuclear LC3 for autophagy. Autophagy. 2015;11(5):852–853. doi:10.1080/15548627.2015.103801625945743
  • KangR, ZehHJ, LotzeMT, TangD. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–580. doi:10.1038/cdd.2010.19121311563
  • LamarkT, SvenningS, JohansenT. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 2017;61(6):609–624. doi:10.1042/EBC2017003529233872
  • GalluzziL, Bravo-San PedroJM, BlomgrenK, KroemerG. Autophagy in acute brain injury. Nat Rev Neurosci. 2016;17(8):467–484. doi:10.1038/nrn.2016.5127256553
  • BaixauliF, Lopez-OtinC, MittelbrunnM. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403. doi:10.3389/fimmu.2014.0040325191326