247
Views
18
CrossRef citations to date
0
Altmetric
Original Research

Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 509-518 | Published online: 04 Feb 2020

References

  • NgJH, IyerNG, TanMH, EdgrenG. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck. 2017;39(2):297–304. doi:10.1002/hed.2458927696557
  • SimardEP, TorreLA, JemalA. International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site. Oral Oncol. 2014;50(5):387–403. doi:10.1016/j.oraloncology.2014.01.01624530208
  • BelloIO, SoiniY, SaloT. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (I). Oral Oncol. 2010;46(9):630–635. doi:10.1016/j.oraloncology.2010.06.00620637681
  • MichikawaC, UzawaN, KayamoriK, et al. Clinical significance of lymphatic and blood vessel invasion in oral tongue squamous cell carcinomas. Oral Oncol. 2012;48(4):320–324. doi:10.1016/j.oraloncology.2011.11.01422178206
  • AnnertzK, AndersonH, PalmerK, WennerbergJ. The increase in incidence of cancer of the tongue in the Nordic countries continues into the twenty-first century. Acta Otolaryngol. 2012;132(5):552–557. doi:10.3109/00016489.2011.64914622339663
  • Di MaioM, BaschE, BryceJ, PerroneF. Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat Rev Clin Oncol. 2016;13(5):319–325. doi:10.1038/nrclinonc.2015.22226787278
  • LuCS, ShiehGS, WangCT, et al. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget. 2017;8(19):30844–30858. doi:10.18632/oncotarget.960227244887
  • JiP, ZhangY, WangSJ, et al. CD44hiCD24lo mammosphere-forming cells from primary breast cancer display resistance to multiple chemotherapeutic drugs. Oncol Rep. 2016;35(6):3293–3302. doi:10.3892/or.2016.473927109463
  • RashidiB, MalekzadehM, GoodarziM, MasoudifarA, MirzaeiH. Green tea and its anti-angiogenesis effects. Biomed Pharmacother. 2017;89:949–956. doi:10.1016/j.biopha.2017.01.16128292023
  • PavanAR, SilvaGD, JornadaDH, et al. Unraveling the anticancer effect of curcumin and resveratrol. Nutrients. 2016;8:11. doi:10.3390/nu8110628
  • GoyalS, GuptaN, ChatterjeeS, NimeshS. Natural plant extracts as potential therapeutic agents for the treatment of cancer. Curr Top Med Chem. 2017;17(2):96–106. doi:10.2174/156802661666616053015440727237328
  • TeitenMH, EifesS, DicatoM, DiederichM. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel). 2010;2(1):128–162. doi:10.3390/toxins201012822069551
  • MaheshwariRK, SinghAK, GaddipatiJ, SrimalRC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–2087. doi:10.1016/j.lfs.2005.12.00716413584
  • MomtaziAA, ShahabipourF, KhatibiS, JohnstonTP, PirroM, SahebkarA. Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.27457236
  • MirzaeiH, NaseriG, RezaeeR, et al. Curcumin: a new candidate for melanoma therapy? Int J Cancer. 2016;139(8):1683–1695. doi:10.1002/ijc.3022427280688
  • KasiPD, TamilselvamR, Skalicka-WozniakK, et al. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol. 2016;37(10):13017–13028. doi:10.1007/s13277-016-5183-y27468716
  • KunnumakkaraAB, AnandP, AggarwalBB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225. doi:10.1016/j.canlet.2008.03.00918479807
  • ShehzadA, WahidF, LeeYS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim). 2010;343(9):489–499. doi:10.1002/ardp.v343:920726007
  • HoornstraD, VesterlinJ, ParnanenP, et al. Fermented lingonberry juice inhibits oral tongue squamous cell carcinoma invasion in vitro similarly to curcumin. In Vivo. 2018;32(5):1089–1095. doi:10.21873/invivo.1135030150430
  • LiaoF, LiuL, LuoE, HuJ. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch Oral Biol. 2018;92:32–37. doi:10.1016/j.archoralbio.2018.04.01529751146
  • RuJ, LiP, WangJ, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-1324735618
  • LiuX, OuyangS, YuB, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(WebServer issue):W609–W614. doi:10.1093/nar/gkq30020430828
  • WangX, PanC, GongJ, LiuX, LiH. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model. 2016;56(6):1175–1183. doi:10.1021/acs.jcim.5b0069027187084
  • WangX, ShenY, WangS, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356–W360. doi:10.1093/nar/gkx37428472422
  • Huang daW, ShermanBT, LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi:10.1038/nprot.2008.21119131956
  • Huang daW, ShermanBT, LempickiRA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn92319033363
  • PolitoL, BortolottiM, PedrazziM, MercatelliD, BattelliMG, BolognesiA. Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1. Phytomedicine. 2016;23(1):32–41. doi:10.1016/j.phymed.2015.11.00626902405
  • XiaoX, LuoH, VanekKN, LaRueAC, SchulteBA, WangGY. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells. Stem Cells Dev. 2015;24(11):1342–1351. doi:10.1089/scd.2014.040225603016
  • GongY, YangJ, CaiJ, LiuQ, ZhangJM, ZhangZ. Effect of Gpx3 gene silencing by siRNA on apoptosis and autophagy in chicken cardiomyocytes. J Cell Physiol. 2019;234(6):7828–7838. doi:10.1002/jcp.v234.630515791
  • HanL, YangX, SunW, et al. The study of GPX3 methylation in patients with Kashin-Beck disease and its mechanism in chondrocyte apoptosis. Bone. 2018;117:15–22. doi:10.1016/j.bone.2018.08.01730153510
  • ZhuY, LiuA, ZhangX, et al. The effect of benzyl isothiocyanate and its computer-aided design derivants targeting alkylglycerone phosphate synthase on the inhibition of human glioma U87MG cell line. Tumour Biol. 2015;36(5):3499–3509. doi:10.1007/s13277-014-2986-625542233
  • ZhuY, HanY, MaY, YangP. ADME/toxicity prediction and antitumor activity of novel nitrogenous heterocyclic compounds designed by computer targeting of alkylglycerone phosphate synthase. Oncol Lett. 2018;16(2):1431–1438. doi:10.3892/ol.2018.887330008821
  • ItalianoD, LenaAM, MelinoG, CandiE. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle (Georgetown, Tex). 2012;11(24):4589–4596. doi:10.4161/cc.22853
  • ShaJ, LiJ, WangW, et al. Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling. Biomed Pharmacother. 2016;84:177–184. doi:10.1016/j.biopha.2016.09.03727657825
  • ZhouX, WangW, LiP, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23(1–2):29–34. doi:10.3727/096504015X14452563486011
  • MartinouJC, YouleRJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1):92–101. doi:10.1016/j.devcel.2011.06.01721763611
  • OltvaiZN, MillimanCL, KorsmeyerSJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609–619. doi:10.1016/0092-8674(93)90509-O8358790
  • MaesME, SchlampCL, NickellsRW. BAX to basics: how the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 2017;57:1–25. doi:10.1016/j.preteyeres.2017.01.00228064040
  • EwaldB, SampathD, PlunkettW. H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther. 2007;6(4):1239–1248. doi:10.1158/1535-7163.MCT-06-063317406032