161
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Pre-Clinical Pharmacokinetics, Tissue Distribution and Physicochemical Studies of CLBQ14, a Novel Methionine Aminopeptidase Inhibitor for the Treatment of Infectious Diseases

, , , , , , & ORCID Icon show all
Pages 1263-1277 | Published online: 30 Mar 2020

References

  • Center for Disease Control and Prevention, Infectious Disease. FastStats: infectious/immune 2017. U.S. Department of Health & Human Services [Updated 119, 2017; cited July 16, 2019].
  • RocaI, AkovaM, BaqueroF, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;6:22–29. doi:10.1016/j.nmni.2015.02.00726029375
  • ChaiSC, WangW-L, DingD-R, et al. Growth inhibition of Escherichia coli and methicillin-resistant Staphylococcus aureus by targeting cellular methionine aminopeptidase. Eur J Med Chem. 2011;46(8):3537–3540. doi:10.1016/j.ejmech.2011.04.05621575996
  • OlaleyeO, RaghunandTR, BhatS, et al. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. Chem Biol. 2010;17(1):86–97. doi:10.1016/j.chembiol.2009.12.01420142044
  • OlaleyeO, RaghunandTR, BhatS, et al. Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb). 2011;91(Suppl 1):S61–5. doi:10.1016/j.tube.2011.10.01222115541
  • JohnSF, AniemekeE, HaNP, et al. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis. 2016;101(Supplement):S73–S77. doi:10.1016/j.tube.2016.09.025
  • ZhangX, ChenS, HuZ, et al. Expression and characterization of two functional methionine aminopeptidases from Mycobacterium tuberculosis H37Rv. Curr Microbiol. 2009;59(5):520–525. doi:10.1007/s00284-009-9470-319688379
  • KangJ-M, JuH-L, SohnW-M, et al. Characterization of the biochemical properties of two methionine aminopeptidases of Cryptosporidium parvum. Parasitol Int. 2012;61(4):707–710. doi:10.1016/j.parint.2012.05.00822609952
  • ChenX, ChongCR, ShiL, et al. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A. 2006;103(39):14548–14553. doi:10.1073/pnas.060410110316983082
  • KumarR, TiwariK, DubeyVK. Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci Rep. 2017;7(1):95. doi:10.1038/s41598-017-00186-928273904
  • IsicheiA, OlaleyeO. Characterization of CLBQ14 as a Methionine Aminopeptidase Inhibitor in Enterococcus Faecalis. Texas Southern University; 2017 Unpublished manuscript.
  • KishorC, GumpenaR, ReddiR, et al. Structural studies of Enterococcus faecalis methionine aminopeptidase and design of microbe specific 2, 2ʹ-bipyridine based inhibitors. Med Chem Comm. 2012;3:1406–1412. doi:10.1039/c2md20096a
  • HelgrenTR, ChenC, WangtrakuldeeP, et al. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem. 2017;25(3):813–824. doi:10.1016/j.bmc.2016.11.01328089350
  • YuanH, ChaiSC, LamCK, et al. Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Bioorg Med Chem Lett. 2011;21(11):3395–3398. doi:10.1016/j.bmcl.2011.03.11621524572
  • GriffithEC, SuZ, TurkBE, et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol. 1997;4(6):461–471. doi:10.1016/S1074-5521(97)90198-89224570
  • EhlersT, FurnessS, Philip RobinsonT, et al. Methionine aminopeptidase Type-2 inhibitors targeting angiogenesis. Curr Top Med Chem. 2016;16(13):1478–1488. doi:10.2174/156802661566615091512120426369821
  • ShimizuH, YamagishiS, ChibaH, et al. Methionine aminopeptidase 2 as a potential therapeutic target for human non-small-cell lung cancers. Adv Clin Exp Med. 2016;25(1):117–128. doi:10.17219/acem/6071526935506
  • ChunE, HanCK, YoonJH, et al. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model. Int J Cancer. 2005;114(1):124–130. doi:10.1002/(ISSN)1097-021515523682
  • BernierSG, LazarusDD, ClarkE, et al. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101(29):10768–10773. doi:10.1073/pnas.040410510115249666
  • BradshawRA, BrickeyWW, WalkerKW. N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families. Trends Biochem Sci. 1998;23(7):263–267. doi:10.1016/S0968-0004(98)01227-49697417
  • GiglioneC, VallonO, MeinnelT. Control of protein life-span by N-terminal methionine excision. EMBO J. 2003;22(1):13–23. doi:10.1093/emboj/cdg00712505980
  • GiglioneC, BoularotA, MeinnelT. Protein N-terminal methionine excision. Cell Mol Life Sci. 2004;61(12):1455–1474. doi:10.1007/s00018-004-3466-815197470
  • ArfinSM, KendallRL, HallL, et al. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A. 1995;92(17):7714–7718. doi:10.1073/pnas.92.17.77147644482
  • KeelingPJ, DoolittleWF. Methionine aminopeptidase-1: the MAP of the mitochondrion? Trends Biochem Sci. 1996;21(8):285–286.8772380
  • LowtherWT, MatthewsBW. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta. 2000;1477(1–2):157–167. doi:10.1016/S0167-4838(99)00271-X10708856
  • National Center for Biotechnology Information. PubChem Compound Database; CID=82095. [ cited 3 10, 2017]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/82095. Accessed 318, 2020.
  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press; 2011.
  • ChhonkerYS, ChandasanaH, KumarA, et al. Pharmacokinetics, tissue distribution and plasma protein binding studies of rohitukine: a potent anti-hyperlipidemic agent. Drug Res (Stuttg). 2015;65(7):380–387. doi:10.1055/s-0034-138777425243649
  • EkpenyongO, CooperC, MaJ, et al. A simple, sensitive and reliable LC-MS/MS method for the determination of 7-bromo-5-chloroquinolin-8-ol (CLBQ14), a potent and selective inhibitor of methionine aminopeptidases: application to pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1097–1098:35–43. doi:10.1016/j.jchromb.2018.08.027
  • DaviesB, MorrisT. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–1095. doi:10.1023/A:10189436131228378254
  • TamakiS, KomuraH, KogayuM, et al. Comparative assessment of empirical and physiological approaches on predicting human clearances. J Pharm Sci. 2011;100(3):1147–1155. doi:10.1002/jps.2232120830811
  • YangJ, JameiM, YeoKR, et al. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos. 2007;35(3):501–502. doi:10.1124/dmd.106.01335917325025
  • WardKW, SmithBR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–611. doi:10.1124/dmd.32.6.60315155551
  • LipinskiCA, LombardoF, DominyBW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1):3–25. doi:10.1016/S0169-409X(96)00423-1
  • BhalSK. LogP—making sense of the value. Advanced Chemistry Development Inc. (ACD/Labs); 2011 Available from: https://www.acdlabs.com/download/app/physchem/making_sense.pdf. Accessed 59, 2019.
  • O’BrienZ, Fallah MoghaddamM. Small molecule kinase inhibitors approved by the FDA from 2000 to 2011: a systematic review of preclinical ADME data. Expert Opin Drug Metab Toxicol. 2013;12(9):1597–1612. doi:10.1517/17425255.2013.834046
  • GadSC, CassidyCD, AubertN, SpainhourB, RobbeH. Nonclinical vehicle use in studies by multiple routes in multiple species. Int J Toxicol. 2006;25(6):499–521. doi:10.1080/1091581060096153117132609
  • ZaretzkiJ, MatlockM, SwamidassSJ. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J Chem Inf. 2013;53(12):3373–3383.
  • StewartJJP. MOPAC 2012, Stewart Computational Chemistry. Colorado Springs, CO, USA; 2012.
  • O’BoyleNM, BanckM, JamesCA, MorleyC, VandermeerschT, HutchisonGR. Open Babel: an open chemical toolbox. J Chem Inf. 2011;3:33. doi:10.1186/1758-2946-3-33
  • MartignoniM, GroothuisGM, de KanterR. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–894. doi:10.1517/17425255.2.6.87517125407
  • SmithDA, JonesBC. Speculations on the substrate structure–activity relationship (SSAR) of cytochrome P450 enzymes. Biochem Pharmacol. 1992;44:2089–2098. doi:10.1016/0006-2952(92)90333-E1472073
  • CreweHK, LennardMS, TuckerGT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P450 2D6 (CYP2D6) activity in human liver microsomes. 1992. Br J Clin Pharmacol. 2004;58:S744–S750. doi:10.1111/bcp.2004.58.issue-715595963
  • OsborneDW, MusakhanianJ. Skin penetration and permeation properties of Transcutol®—neat or diluted mixtures. AAPS PharmSciTech. 2018;19(8):3512. doi:10.1208/s12249-018-1196-830421383