94
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Arsenic Disulfide Promoted Hypomethylation by Increasing DNA Methyltransferases Expression in Myelodysplastic Syndrome

ORCID Icon, , , , &
Pages 1641-1650 | Published online: 30 Apr 2020

References

  • PanYB, LiuGH, ZhouFL, SuBJ, LiYR. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;18(1):1–14. doi:10.1007/s10238-017-0467-028752221
  • NebbiosoA, TambaroFP, Dell’AversanaC, AltucciL. Cancer epigenetics: moving forward. PLoS Genet. 2018;14(6):e1007362. doi:10.1371/journal.pgen.100736229879107
  • QianJ, ZhuZ-H, LinJ, et al. Hypomethylation of PRAME promoter is associated with poor prognosis in myelodysplastic syndrome. Br J Haematol. 2011;154(1):153–155. doi:10.1111/j.1365-2141.2011.08585.x21517806
  • BollatiV, BaccarelliA, HouL, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007;67(3):876–880. doi:10.1158/0008-5472.CAN-06-299517283117
  • ChenQ, LinJ, YaoDM, et al. Aberrant hypomethylation of DDX43 promoter in myelodysplastic syndrome. Br J Haematol. 2012;158(2):283–296. doi:10.1111/j.1365-2141.2012.09138.x22489576
  • NakayamaM, WadaM, HaradaT, et al. Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood. 1998;92(11):4296–4307. doi:10.1182/blood.V92.11.42969834236
  • YamashitaK, HosodaK, NishizawaN, KatohH, WatanabeM. Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment. Cancer Sci. 2018;109(12):3695–3706. doi:10.1111/cas.1381230264476
  • FlothoC, SommerS, LübbertM. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin Cancer Biol. 2018;51:68–79. doi:10.1016/j.semcancer.2017.10.01129129488
  • Montalban-BravoG, Garcia-ManeroG. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(1):129–147. doi:10.1002/ajh.2493029214694
  • JelinekJ, LiangS, NeumannF, et al. Cancer drivers affected by aberrant DNA methylation in MDS and AML. Blood. 2011;118(21):1716. doi:10.1182/blood.V118.21.1716.171621852444
  • KortsarisAC, MatsoukaPT. Aberrant methylation of c-myc and c-fos protooncogenes and p53 tumor suppressor gene in myelodysplastic syndromes and acute non-lymphocytic leukemia. J BUON. 2003;8(4):341–350.17472275
  • LinJ, QianJ, YaoDM, et al. Aberrant hypomethylation of SALL4 gene in patients with myelodysplastic syndrome. Leuk Res. 2013;37(1):71–75. doi:10.1016/j.leukres.2012.10.01423122807
  • WuDH, YaoDM, YangL, et al. Hypomethylation of let-7a-3 is associated with poor prognosis in myelodysplastic syndrome. Leuk Lymphoma. 2017;58(1):96–103. doi:10.1080/10428194.2016.118727327244225
  • VardimanJW, ThieleJ, ArberDA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–951. doi:10.1182/blood-2009-03-20926219357394
  • NakagawaT, MatozakiS. The SKM-1 leukemic cell line established from a patient with progression to myelomonocytic leukemia in myelodysplastic syndrome (MDS)-contribution to better understanding of MDS. Leuk Lymphoma. 1995;17(3–4):335–339. doi:10.3109/104281995090568418580805
  • MoranS, ArribasC, EstellerM. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–399. doi:10.2217/epi.15.11426673039
  • BerardiniTZ. The gene ontology in 2010: extensions and refinements. Nucleic Acids Res. 2009;38:331–335.
  • AshburnerM, BallCA, BlakeJA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/7555610802651
  • IssaJP. The myelodysplastic syndrome as a prototypical epigenetic disease. Blood. 2013;121(19):3811–3817. doi:10.1182/blood-2013-02-45175723660859
  • EdenA, GaudetF, WaghmareA, JaenischR. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455. doi:10.1126/science.108355712702868
  • PogribnyIP, BelandFA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66(14):2249–2261. doi:10.1007/s00018-009-0015-519326048
  • WuH, ChenY, LiangJ, et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature. 2005;438(7070):981–987. doi:10.1038/nature0422516355216
  • Van TongelenA, LoriotA, De SmetC. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017;396:130–137. doi:10.1016/j.canlet.2017.03.02928342986
  • EmadiA, GoreSD. Arsenic trioxide - an old drug rediscovered. Blood Rev. 2010;24(4–5):191–199. doi:10.1016/j.blre.2010.04.00120471733
  • PlaitakisA, Kalef-EzraE, KotzamaniD, ZaganasI, SpanakiC. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology. 2017;6(1):11.
  • JinL, LiD, AlesiGN, et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015;27(2):257–270. doi:10.1016/j.ccell.2014.12.00625670081
  • LeeAS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14:263–276. doi:10.1038/nrc370124658275
  • HetzC. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. doi:10.1038/nrm327022251901
  • ArapMA, LahdenrantaJ, MintzPJ, et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 2004;6(3):275–284. doi:10.1016/j.ccr.2004.08.01815380518
  • HeuserM, YunH, TholF. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol. 2018;51:170–179. doi:10.1016/j.semcancer.2017.07.00928778402
  • BaerC, ClausR, FrenzelLP, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72(15):3775–3785. doi:10.1158/0008-5472.CAN-12-080322710432
  • RajuR, PalapettaSM, SandhyaVK, et al. A network map of FGF-1/FGFR signaling system. J Signal Transduct. 2014;2014:962962. doi:10.1155/2014/96296224829797
  • LiJ, WeiZ, LiH, et al. Clinicopathological significance of fibroblast growth factor 1 in non-small cell lung cancer. Hum Pathol. 2015;46:1821–1828. doi:10.1016/j.humpath.2015.07.02226391572
  • WangX, ZhuQ, LinY, et al. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br J Cancer. 2017;117(9):1371–1382. doi:10.1038/bjc.2017.29728898232
  • PollakM. The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res. 2012;18(1):40–50. doi:10.1158/1078-0432.CCR-11-099822215905
  • ZoreaJ, PrasadM, CohenL, et al. IGF1R upregulation confers resistance to isoform-specific inhibitors of PI3K in PIK3CA-driven ovarian cancer. Cell Death Dis. 2018;9:944. doi:10.1038/s41419-018-1025-830237504
  • KleinCB, CostaM. DNA methylation and gene expression: introduction and overview. Mutat Res. 1997;386(2):103–105. doi:10.1016/S1383-5742(96)00046-49113111
  • RobertsonKD, JonesPA. DNA methylation: past, present and future directions. Carcinogenesis. 2000;21:461–467. doi:10.1093/carcin/21.3.46110688866