241
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine

, , , , &
Pages 2263-2274 | Published online: 09 Jun 2020

References

  • GuoS, ZhangL, ZhangY, et al. Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition. Aging (Albany NY). 2019 11. doi:10.18632/aging.102271
  • ZhuB, RenC, DuK, et al. Olean-28,13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem Pharmacol. 2019;170:113642. doi:10.1016/j.bcp.2019.11364231541631
  • ZhangX, ZhangD, HuangL, et al. Discovery of novel biomarkers of therapeutic responses in Han Chinese pemetrexed-based treated advanced NSCLC patients. Front Pharmacol. 2019;10:944. doi:10.3389/fphar.2019.0094431507426
  • QiuZ, YeB, ZhaoS, et al. Non-canonical Raf-1/p70S6K signalling in non-small-cell lung cancer. J Cell Mol Med. 2019;23(11):7632–7640. doi:10.1111/jcmm.14636.31541523
  • GuptaA, TunA, TiconaK, BaquiA, GuevaraE. Invasive aspergillosis in a patient with stage III (or 3a or 3b) non-small-cell lung cancer treated with durvalumab. Case Rep Oncol Med. 2019;2019:2178925.31534809
  • GeP, CaoL, YaoYJ, JingRJ, WangW, LiHJ. lncRNA FOXD2-AS1 confers cisplatin resistance of non-small-cell lung cancer via regulation of miR185-5p-SIX1 axis. Onco Targets Ther. 2019;12:6105–6117. doi:10.2147/OTT.S19745431534348
  • SongH, WangR, XiaoH, et al. A cross-linked polymeric micellar delivery system for cisplatin(IV) complex. Eur J Pharm Biopharm. 2013;83(1):63–75. doi:10.1016/j.ejpb.2012.09.00423046872
  • KesharwaniSS, AhmadR, BakkariMA, et al. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation. J Control Release. 2018;290:165–179. doi:10.1016/j.jconrel.2018.08.00430142410
  • KumarS, KesharwaniSS, MathurH, TyagiM, BhatGJ, TummalaH. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur J Pharm Sci. 2016;82:86–96. doi:10.1016/j.ejps.2015.11.01026588875
  • ZouW, LiuC, ChenZ, ZhangN. Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm. 2009;370(1–2):187–195. doi:10.1016/j.ijpharm.2008.11.01619073241
  • DesaleSS, SoniKS, RomanovaS, CohenSM, BronichTK. Targeted delivery of platinum-taxane combination therapy in ovarian cancer. J Control Release. 2015;220(Pt B):651–659. doi:10.1016/j.jconrel.2015.09.00726381902
  • HuQ, SunW, WangC, GuZ. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. doi:10.1016/j.addr.2015.10.02226546751
  • WangW, ChenT, XuH, et al. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules. 2018;23(7):1578.
  • LvZD, LiuXP, ZhaoWJ, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(6):2818–2824.25031701
  • TangH, MurphyCJ, ZhangB, et al. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31(27):7139–7149. doi:10.1016/j.biomaterials.2010.06.00720591475
  • JelezovaI, DrakalskaE, MomekovaD, et al. Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems. Eur J Pharm Sci. 2015;78:67–78. doi:10.1016/j.ejps.2015.07.00526159739
  • MisraR, SahooSK. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm. 2011;8(3):852–866. doi:10.1021/mp100455h21480667
  • BaekJS, ChoCW. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget. 2017;8(18):30369–30382. doi:10.18632/oncotarget.1615328423731
  • YanJ, WangY, JiaY, et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother. 2017;88:374–383. doi:10.1016/j.biopha.2016.12.13828122302
  • GaoZ, LiZ, YanJ, WangP. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther. 2017;11:2595–2604. doi:10.2147/DDDT.S140797
  • RamasamyT, TranTH, ChoiJY, et al. Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014;102:653–661. doi:10.1016/j.carbpol.2013.11.00924507332
  • GoDP, HungA, GrasSL, O’ConnorAJ. Use of a short peptide as a building block in the layer-by-layer assembly of biomolecules on polymeric surfaces. J Phys Chem B. 2012;116(3):1120–1133. doi:10.1021/jp208898m22185677
  • JeonS, YooCY, ParkSN. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces. 2015;129:7–14. doi:10.1016/j.colsurfb.2015.03.01825819360
  • SuhMS, ShenJ, KuhnLT, BurgessDJ. Layer-by-layer nanoparticle platform for cancer active targeting. Int J Pharm. 2017;517(1–2):58–66. doi:10.1016/j.ijpharm.2016.12.00627923697
  • ZhouD, XiaoH, MengF, et al. Layer-by-layer assembled polypeptide capsules for platinum-based pro-drug delivery. Bioconjug Chem. 2012;23(12):2335–2343. doi:10.1021/bc300144e23176570
  • ZhangR, RuY, GaoY, LiJ, MaoS. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des Devel Ther. 2017;11:2631–2642. doi:10.2147/DDDT.S143047
  • HongY, CheS, HuiB, et al. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614. doi:10.1016/j.biopha.2019.10861430798129
  • TanS, WangG. Lung cancer targeted therapy: folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin. Biomed Pharmacother. 2018;102:55–63. doi:10.1016/j.biopha.2018.03.04629549729
  • YangF, LiA, LiuH, ZhangH. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther. 2018;12:3321–3333. doi:10.2147/DDDT.S176879
  • AlibolandiM, AbnousK, AnvariS, MohammadiM, RamezaniM, TaghdisiSM. CD133-targeted delivery of self-assembled PEGylated carboxymethylcellulose-SN38 nanoparticles to colorectal cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1159–1169. doi:10.1080/21691401.2018.144696929519158
  • GuoS, ZhangY, WuZ, et al. Synergistic combination therapy of lung cancer: cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed Pharmacother. 2019;118:109225. doi:10.1016/j.biopha.2019.10922531325705
  • ZhangD, KongYY, SunJH, et al. Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance. Int J Nanomedicine. 2017;12:2081–2108. doi:10.2147/IJN.S12879028356731
  • ZhangG, LiuF, JiaE, JiaL, ZhangY. Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Drug Deliv. 2016;23(4):1393–1397. doi:10.3109/10717544.2015.105405226165422
  • CuiT, ZhangS, SunH. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep. 2017;37(2):1253–1260. doi:10.3892/or.2017.534528075466
  • SongX, ZhaoY, HouS, et al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69(2):445–453. doi:10.1016/j.ejpb.2008.01.01318374554
  • ZhangY, AngelidakiI. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnol Bioeng. 2011;108(10):2339e47. doi:10.1002/bit.2320421557205
  • ZhangY, ZhangP, ZhuT. Ovarian carcinoma biological nanotherapy: comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery. Biomed Pharmacother. 2019;109:475–483. doi:10.1016/j.biopha.2018.10.15830399584
  • RuanC, LiuL, LuY, et al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B. 2018;8(1):85–96. doi:10.1016/j.apsb.2017.09.00829872625
  • SrinivasanAR, LakshmikuttyammaA, ShoyeleSA. Investigation of the stability and cellular uptake of self-associated monoclonal antibody (MAb) nanoparticles by non-small lung cancer cells. Mol Pharm. 2013;10(9):3275–3284. doi:10.1021/mp300593523915336
  • RajputMKS, KesharwaniSS, KumarS, MuleyP, NarisettyS, TummalaH. Dendritic cell-targeted nanovaccine delivery system prepared with an immune-active polymer. ACS Appl Mater Interfaces. 2018;10(33):27589–27602. doi:10.1021/acsami.8b0201930048112
  • ZhuD, TaoW, ZhangH, et al. (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 2016;30:144–154. doi:10.1016/j.actbio.2015.11.03126602819
  • XiongY, ZhaoY, MiaoL, LinCM, HuangL. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release. 2016;244(Pt A):63–73. doi:10.1016/j.jconrel.2016.11.00527840166
  • DingQ, LiZ, YangY, et al. Preparation and therapeutic application of docetaxel-loaded poly(d,l-lactide) nanofibers in preventing breast cancer recurrence. Drug Deliv. 2016;23(8):2677–2685. doi:10.3109/10717544.2015.104849026171813
  • NishiyamaN, OkazakiS, CabralH, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63(24):8977–8983.14695216
  • LuZ, SuJ, LiZ, ZhanY, YeD. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev Ind Pharm. 2017;43(1):160–170. doi:10.1080/03639045.2016.122633727553814
  • FengX, YuanYJ, WuJC. Synthesis and evaluation of water-soluble paclitaxel prodrugs. Bioorg Med Chem Lett. 2002;12(22):3301–3303. doi:10.1016/S0960-894X(02)00694-712392737
  • MensahLB, MortonSW, LiJ, et al. Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng Transl Med. 2019;4(2):e10131. doi:10.1002/btm2.1013131249881
  • YuguiF, WangH, SunD, ZhangX. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 co-loaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2019;114:108820. doi:10.1016/j.biopha.2019.10882030951947
  • LiM, ZhaoL, ZhangT, et al. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharm Sin B. 2019;9(2):421–432. doi:10.1016/j.apsb.2018.08.00830972286
  • JiangH, GengD, LiuH, LiZ, CaoJ. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Drug Deliv. 2016;23(9):3665–3673. doi:10.1080/10717544.2016.121795427749102
  • DuanW, LiuY. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. Drug Des Devel Ther. 2018;12:2149–2161. doi:10.2147/DDDT.S166402
  • BaezaA. Tumor targeted nanocarriers for immunotherapy. Molecules. 2020;25(7):1508. doi:10.3390/molecules25071508
  • MaruyamaK. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–169. doi:10.1016/j.addr.2010.09.00320869415
  • MahmoodMA, MadniA, RehmanM, RahimMA, JabarA. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: fabrication, post-formulation and acute oral toxicity evaluation. Int J Nanomedicine. 2019;20(14):10035–10046. doi:10.2147/IJN.S232350
  • ChenD, JiangX, LiuJ, JinX, ZhangC, PingQ. In vivo evaluation of novel pH-sensitive mPEG-Hz-Chol conjugate in liposomes: pharmacokinetics, tissue distribution, efficacy assessment. Artif Cells Blood Substit Immobil Biotechnol. 2010;38(3):136–142. doi:10.3109/1073119100368548120337549