123
Views
1
CrossRef citations to date
0
Altmetric
Original Research

N-Acetyl-l-Leucine-Polyethyleneimine-Mediated Delivery of CpG Oligodeoxynucleotides 2006 Inhibits RAW264.7 Cell Osteoclastogenesis

, , , ORCID Icon, , & ORCID Icon show all
Pages 2657-2665 | Published online: 07 Jul 2020

References

  • HegdeR, AwanKH. Effects of periodontal disease on systemic health. Disease-a-Month. 2019;65(6):185–192. doi:10.1016/j.disamonth.2018.09.01130384973
  • HajishengallisG. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. doi:10.1038/nri378525534621
  • RamalingamS, SundarC, JansenJA, AlghamdiH. Chapter 1 - Alveolar bone science: structural characteristics and pathological changes In: AlghamdiH, JansenJ, editors. Dental Implants and Bone Grafts. Woodhead Publishing; 2020:1–22.
  • IntiniG, KatsuragiY, KirkwoodKL, YangS. Alveolar bone loss mechanisms, potential therapeutic targets, and interventions. Adv Dent Res. 2014;26(1):38–46.24736703
  • ZhaoQ, HuY, DengS, et al. Cytidine-phosphate-guanosine oligodeoxynucleotides in combination with CD40 ligand decrease periodontal inflammation and alveolar bone loss in a TLR9-independent manner. J Appl Oral Sci. 2018;26:e20170451. doi:10.1590/1678-7757-2017-045129791566
  • ShimizuH, NakagamiH, MoritaS, et al. New treatment of periodontal diseases by using NF-κB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing. Antioxid Redox Signal. 2009;11(9):2065–2075. doi:10.1089/ars.2008.235519186992
  • Krieg, MA. CpG motifs: the active ingredient in bacterial extracts? Nat Med. 2003;9(7):831–835. doi:10.1038/nm0703-83112835699
  • HemmiH, TakeuchiO, KawaiT, et al. A toll-like receptor recognizes bacterial. Nature. 2000;408(6813):740–745. doi:10.1038/3504712311130078
  • YuX, WangY, LinJ, et al. Lipopolysaccharides-induced suppression of innate-like B cell apoptosis is enhanced by CpG oligodeoxynucleotide and requires toll-like receptors 2 and 4. PLoS One. 2016;11(11):e0165862. doi:10.1371/journal.pone.016586227812176
  • LiuC, HashizumeT, Kurita-OchiaiT, FujihashiK, YamamotoM. Oral immunization with Porphyromonas gingivalis outer membrane protein and CpG oligodeoxynucleotides elicits T helper 1 and 2 cytokines for enhanced protective immunity. Mol Oral Microbiol. 2010;25(3):178–189. doi:10.1111/j.2041-1014.2009.00560.x20502628
  • ZouW, AmcheslavskyA, Bar-ShavitZ. CpG oligodeoxynucleotides modulate the osteoclastogenic activity of osteoblasts via toll-like receptor 9. J Biol Chem. 2003;278(19):16732–16740. doi:10.1074/jbc.M21247320012611893
  • AmcheslavskyA, HemmiH, AkiraS, Bar-ShavitZ. Differential contribution of osteoclast- and osteoblast-lineage cells to CpG-oligodeoxynucleotide (CpG-ODN) modulation of osteoclastogenesis. J Bone Miner Res. 2005;20(9):1692–1699. doi:10.1359/JBMR.05051516059640
  • ZouW, SchwartzH, EndresS, HartmannG, Bar-ShavitZ. CpG oligonucleotides: novel regulators of osteoclast differentiation. FASEB J. 2002;16(3):274.11874977
  • KrisherT, Bar-ShavitZ. Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem. 2014;115(12):2146–2154. doi:10.1002/jcb.2489125079212
  • LambertG, FattalE, CouvreurP. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev. 2001;47(1):99–112.11251248
  • MintzerMA, SimanekEE. Nonviral vectors for gene delivery. Chem Rev. 2009;109(2):259–302.19053809
  • PackDW, HoffmanAS, PunS, StaytonPS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–593.16052241
  • XiuKM, YangJJ, ZhaoNN, LiJS, XuFJ. Multiarm cationic star polymers by atom transfer radical polymerization from β-cyclodextrin cores: influence of arm number and length on gene delivery. Acta Biomater. 2013;9(1):4726–4733. doi:10.1016/j.actbio.2012.08.02022917804
  • FunhoffAM, van NostrumCF, LokMC, FretzMM, CrommelinDJA, HenninkWE. Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery. Bioconjug Chem. 2004;15(6):1212–1220. doi:10.1021/bc049864q15546186
  • FischerD, LiY, AhlemeyerB, KrieglsteinJ, KisselT. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–1131. doi:10.1016/S0142-9612(02)00445-312527253
  • LiZ, ZhangL, LiQ. Induction of apoptosis in cancer cells through N-acetyl-L-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids Surf B Biointerfaces. 2015;135:S0927776515301387.
  • XuQH, YuanQ, ZhangYQ, et al. Ocular metastasis in elderly male bladder cancer patients: potential risk factors. Am J Mens Health. 2020;14(2):1557988320908998. doi:10.1177/155798832090899832146866
  • YuW, YiZ, YangZ, FeiH, ShenY. N-AC-L-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force. Oncotarget. 2017;8(66):110460–110473. doi:10.18632/oncotarget.2279029299161
  • ShenY, LiuY, GaoH, et al. N -Acetyl- l -leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formation in vitro and in vivo. RSC Adv. 8.
  • GuoY-M, IshiiK, HirokawaM, et al. CpG-ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells. Blood. 2010;115(22):4569–4579. doi:10.1182/blood-2009-08-23920220348392
  • NobutakaH. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int J Nanomedicine. 2017;12:515–531.28144136
  • ShirotaH, KlinmanDM. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines. 2014;13(2):299–312. doi:10.1586/14760584.2014.86371524308579
  • YangM, YanY, FangM, et al. MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int Immunopharmacol. 2012;13;4:408–416.22595192
  • KrisherT, Bar㏒HavitZ. Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem. 2014;115(12):2146–2154.25079212
  • KlinmanMD. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4(4):249–259.15057783
  • MutwiriGK, NichaniAK, BabiukS, BabiukLA. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release. 2004;97(1):1–17. doi:10.1016/j.jconrel.2004.02.02215147800
  • KurreckJ. Antisense technologies: improvement through novel chemical modifications&nbsp. Febs J. 2003;270(8):1628–1644.
  • AgrawalS, ZhaoQ. Antisense therapeutics. Curr Opin Chem Biol. 1998;2(4):519–528. doi:10.1016/S1367-5931(98)80129-49736926
  • HeikenwalderM, PolymenidouM, JuntT, et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med. 2004;10(2):187–192. doi:10.1038/nm98714745443
  • HanagataN. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomed. 2012;7:2181.
  • ZhangH, YanT, XuS, FengS, GaoXD. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Mat Sci Eng C. 2017;73:144. doi:10.1016/j.msec.2016.12.072
  • ZhengY, LinC, HouX, et al. Enhancing the osteogenic capacity of MG63 cells through N-isopropylacrylamide-modified polyethylenimine-mediated oligodeoxynucleotide MT01 delivery. RSC Adv. 2017;7(43):27121–27127. doi:10.1039/C6RA27182K
  • ShenY, LiuY, GaoH, et al. N-Acetyl-l-leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formation in vitro and in vivo. RSC Adv. 2018;8(15):8080–8088. doi:10.1039/C7RA12548H
  • HsiaoKC, ChuPY, ChangGC, LiuKJ. Elevated expression of lumican in lung cancer cells promotes bone metastasis through an autocrine regulatory mechanism. Cancers. 2020;12(1):233. doi:10.3390/cancers12010233