101
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Impacts of CYP2C19 Polymorphism and Clopidogrel Dosing on in-Stent Restenosis: A Retrospective Cohort Study in Chinese Patients

, , , , , , , , & show all
Pages 669-676 | Published online: 19 Feb 2020

References

  • KimYH, ParkDW, AhnJM, et al. Everolimus-eluting stent implantation for unprotected left main coronary artery stenosis. The PRECOMBAT-2 (premier of randomized comparison of bypass surgery versus angioplasty using sirolimus-eluting stent in patients with left main coronary artery disease) study. JACC Cardiovasc Interv. 2012;5(7):708–717. doi:10.1016/j.jcin.2012.05.00222814775
  • SatoT, OnoT, MorimotoY, et al. Differences in clinical and angiographic outcomes with different drug-eluting stents in Japanese patients with and without diabetes mellitus. J Cardiol. 2012;60(5):361–366. doi:10.1016/j.jjcc.2012.07.00222890073
  • KandzariDE, LeonMB, MeredithI, FajadetJ, WijnsW, MauriL. Final 5-year outcomes from the Endeavor zotarolimus-eluting stent clinical trial program: comparison of safety and efficacy with first-generation drug-eluting and bare-metal stents. JACC Cardiovasc Interv. 2013;6(5):504–512. doi:10.1016/j.jcin.2012.12.12523602459
  • ByrneRA, JonerM, KastratiA. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Gruntzig lecture ESC 2014. Eur Heart J. 2015;36(47):3320–3331. doi:10.1093/eurheartj/ehv51126417060
  • OgitaM, MiyauchiK, KurataT, et al. Clinical impact of angiographic restenosis after bare-metal stent implantation on long-term outcomes in patients with coronary artery disease. Circ J. 2011;75(11):2566–2572. doi:10.1253/circj.CJ-11-046921828930
  • CornelissenA, SimsekyilmazS, LiehnE, et al. Apolipoprotein E deficient rats generated via zinc-finger nucleases exhibit pronounced in-stent restenosis. Sci Rep. 2019;9(1):18153. doi:10.1038/s41598-019-54541-z31796798
  • JohnsonJA, CavallariLH. Pharmacogenetics and cardiovascular disease–implications for personalized medicine. Pharmacol Rev. 2013;65(3):987–1009. doi:10.1124/pr.112.00725223686351
  • DestaZ, ZhaoX, ShinJG, FlockhartDA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913–958. doi:10.2165/00003088-200241120-0000212222994
  • RuedlingerJ, PradoY, ZambranoT, et al. CYP2C19()2 polymorphism in chilean patients with in-stent restenosis development and controls. Biomed Res Int. 2017;2017:5783719. doi:10.1155/2017/578371928785581
  • TrenkD, HochholzerW, FrommMF, et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol. 2008;51(20):1925–1934. doi:10.1016/j.jacc.2007.12.05618482659
  • SimonT, VerstuyftC, Mary-KrauseM, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–375. doi:10.1056/NEJMoa080822719106083
  • ZhangZ, ChenM, ZhangL, ZhaoQ. The impact of cytochrome 450 and Paraoxonase polymorphisms on clopidogrel resistance and major adverse cardiac events in coronary heart disease patients after percutaneous coronary intervention. BMC Pharmacol Toxicol. 2020;21(1):1. doi:10.1186/s40360-019-0378-731900240
  • HerbertJM, TissinierA, DefreynG, MaffrandJP. Inhibitory effect of clopidogrel on platelet adhesion and intimal proliferation after arterial injury in rabbits. Arterioscler Thromb. 1993;13(8):1171–1179. doi:10.1161/01.ATV.13.8.11718343491
  • HermannA, WeberAA, SchrorK. Clopidogrel inhibits platelet adhesion and platelet-dependent mitogenesis in vascular smooth muscle cells. Thromb Res. 2002;105(2):173–175. doi:10.1016/S0049-3848(01)00403-011958809
  • EvansDJ, JackmanLE, ChamberlainJ, et al. Platelet P2Y(12) receptor influences the vessel wall response to arterial injury and thrombosis. Circulation. 2009;119(1):116–122. doi:10.1161/CIRCULATIONAHA.107.76269019103996
  • ShuldinerAR, O’ConnellJR, BlidenKP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–857. doi:10.1001/jama.2009.123219706858
  • JeongYH, KimIS, ParkY, et al. Carriage of cytochrome 2C19 polymorphism is associated with risk of high post-treatment platelet reactivity on high maintenance-dose clopidogrel of 150 mg/day: results of the ACCEL-DOUBLE (accelerated platelet inhibition by a double dose of clopidogrel according to gene polymorphism) study. JACC Cardiovasc Interv. 2010;3(7):731–741. doi:10.1016/j.jcin.2010.05.00720650435
  • MazighiM, SaintMJ, BressonD, SzatmaryZ, HoudartE. Platelet aggregation in intracranial stents may mimic in-stent restenosis. AJNR Am J Neuroradiol. 2010;31(3):496–497. doi:10.3174/ajnr.A177819833804
  • FuZ, DongW, ShenM, et al. Relationship between hyporesponsiveness to clopidogrel measured by thrombelastography and in stent restenosis in patients undergoing percutaneous coronary intervention. Clin Biochem. 2014;47(16–17):197–202. doi:10.1016/j.clinbiochem.2014.08.00925160657
  • GuoB, TanQ, GuoD, ShiZ, ZhangC, GuoW. Patients carrying CYP2C19 loss of function alleles have a reduced response to clopidogrel therapy and a greater risk of in-stent restenosis after endovascular treatment of lower extremity peripheral arterial disease. J Vasc Surg. 2014;60(4):993–1001. doi:10.1016/j.jvs.2014.03.29324877854
  • Diaz-VillamarinX, Davila-FajardoCL, Martinez-GonzalezLJ, et al. Genetic polymorphisms influence on the response to clopidogrel in peripheral artery disease patients following percutaneous transluminal angioplasty. Pharmacogenomics. 2016;17(12):1327–1338. doi:10.2217/pgs-2016-005627464309
  • MegaJL, HochholzerW, FrelingerAR, et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306(20):2221–2228. doi:10.1001/jama.2011.170322088980
  • ColletJP, HulotJS, AnzahaG, et al. High doses of clopidogrel to overcome genetic resistance: the randomized crossover CLOVIS-2 (clopidogrel and response variability investigation study 2). JACC Cardiovasc Interv. 2011;4(4):392–402. doi:10.1016/j.jcin.2011.03.00221511218
  • MaW, LiangY, ZhuJ, et al. Relationship of paraoxonase-1 Q192R genotypes and in-stent restenosis and re-stenting in Chinese patients after coronary stenting. Atherosclerosis. 2016;251:305–310. doi:10.1016/j.atherosclerosis.2016.07.90127450784
  • SchulzS, SibbingD, BraunS, et al. Platelet response to clopidogrel and restenosis in patients treated predominantly with drug-eluting stents. Am Heart J. 2010;160(2):355–361. doi:10.1016/j.ahj.2010.05.00320691843
  • ColletJP, HulotJS, CuissetT, et al. Genetic and platelet function testing of antiplatelet therapy for percutaneous coronary intervention: the ARCTIC-GENE study. Eur J Clin Pharmacol. 2015;71(11):1315–1324. doi:10.1007/s00228-015-1917-926265231
  • PriceMJ, BergerPB, TeirsteinPS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA. 2011;305(11):1097–1105. doi:10.1001/jama.2011.29021406646
  • Section of Interventional Cardiology CS, Cardiology of Chinese Medical Association, Editorial Board of Chinese Journal of Cardiology. [Chinese guideline for percutaneous coronary intervention (pocket guideline)]. Zhonghua Xin Xue Guan Bing Za Zhi. 2012;40(4):271–277.22801302
  • DehmerGJ, BlankenshipJC, CilingirogluM, et al. SCAI/ACC/AHA expert consensus document: 2014 update on percutaneous coronary intervention without on-site surgical backup. J Am Coll Cardiol. 2014;63(23):2624–2641. doi:10.1016/j.jacc.2014.03.00224651052
  • Section of Interventional Cardiology of Chinese Society of Cardiology of Chinese Medical Association, Specialty Committee on Prevention and Treatment of Thrombosis of Chinese College of Cardiovascular Physicians, Editorial Board of Chinese Journal of Cardiology. [Chinese guideline for percutaneous coronary intervention (2016)]. Zhonghua Xin Xue Guan Bing Za Zhi. 2016;44(5):382–400. doi:10.3760/cma.j.issn.0253-3758.2016.05.00627220573
  • DodgenTM, HochfeldWE, FicklH, et al. Introduction of the AmpliChip CYP450 test to a South African cohort: a platform comparative prospective cohort study. BMC Med Genet. 2013;14:20. doi:10.1186/1471-2350-14-2023356658
  • LvL, YeW, SongP, et al. Relationship between ALDH2 genotype and in-stent restenosis in Chinese Han patients after percutaneous coronary intervention. BMC Cardiovasc Disord. 2019;19(1):176. doi:10.1186/s12872-019-1161-931345174
  • Clopidogrel. 2012
  • XieX, MaYT, YangYN, et al. Personalized antiplatelet therapy according to CYP2C19 genotype after percutaneous coronary intervention: a randomized control trial. Int J Cardiol. 2013;168(4):3736–3740. doi:10.1016/j.ijcard.2013.06.01423850318
  • ScottSA, SangkuhlK, SteinCM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–323. doi:10.1038/clpt.2013.10523698643
  • KonishiH, KatohY, TakayaN, et al. Platelets activated by collagen through immunoreceptor tyrosine-based activation motif play pivotal role in initiation and generation of neointimal hyperplasia after vascular injury. Circulation. 2002;105(8):912–916. doi:10.1161/hc0802.10525611864917
  • FriedmanRJ, StemermanMB, WenzB, et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J Clin Invest. 1977;60(5):1191–1201. doi:10.1172/JCI108872409735
  • UnterbergC, SandrockD, NebendahlK, BuchwaldAB. Reduced acute thrombus formation results in decreased neointimal proliferation after coronary angioplasty. J Am Coll Cardiol. 1995;26(7):1747–1754. doi:10.1016/0735-1097(95)00373-87594113