115
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Laquinimod Protects Against TNF-α-Induced Attachment of Monocytes to Human Aortic Endothelial Cells (HAECs) by Increasing the Expression of KLF2

, &
Pages 1683-1691 | Published online: 30 Apr 2020

References

  • TabasI, García-CardeñaG, OwensGK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22. doi:10.1083/jcb.20141205225869663
  • Chinetti-GbaguidiG, ColinS, StaelsB. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12(1):10. doi:10.1038/nrcardio.2014.17325367649
  • HorieN, TateishiY, MorikawaM, et al. Acute stroke with major intracranial vessel occlusion: characteristics of cardioembolism and atherosclerosis-related in situ stenosis/occlusion. J Clin Neurosci. 2016;32:24–29. doi:10.1016/j.jocn.2015.12.04327506779
  • BäckM, HanssonGK. Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol. 2015;12(4):199. doi:10.1038/nrcardio.2015.525666404
  • QiuHN, LiuB, LiuW, LiuS. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411(1–2):1.26386872
  • XingJ, LiuY, ChenT. Correlations of chemokine CXCL16 and TNF-α with coronary atherosclerotic heart disease. Exp Ther Med. 2018;15(1):773–776. doi:10.3892/etm.2017.545029399085
  • BranenL, HovgaardL, NitulescuM, BengtssonE, NilssonJ, JovingeS. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24(11):2137–2142. doi:10.1161/01.ATV.0000143933.20616.1b15345516
  • OberoiR, VlacilAK, SchuettJ, et al. Anti-tumor necrosis factor-α therapy increases plaque burden in a mouse model of experimental atherosclerosis. Atherosclerosis. 2018;277:80–89. doi:10.1016/j.atherosclerosis.2018.08.03030176568
  • LibbyP, RochaVZ. All roads lead to IL-6: a central hub of cardiometabolic signaling. Int J Cardiol. 2018;259:213–215. doi:10.1016/j.ijcard.2018.02.06229579604
  • RidkerPM, LibbyP, MacFadyenJG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499–3507. doi:10.1093/eurheartj/ehy31030165610
  • HarringtonJR. The role of MCP‐1 in atherosclerosis. Stem Cells. 2000;18(1):65–66. doi:10.1634/stemcells.18-1-6510661575
  • De SouzaAW, WestraJ, LimburgPC, BijlM, KallenbergCG. HMGB1 in vascular diseases: its role in vascular inflammation and atherosclerosis. Autoimmun Rev. 2012;11(12):909–917. doi:10.1016/j.autrev.2012.03.00722495229
  • VogelME, IdelmanG, KonaniahES, ZuckerSD. Bilirubin prevents atherosclerotic lesion formation in low‐density lipoprotein receptor‐deficient mice by inhibiting endothelial VCAM‐1 and ICAM‐1 signaling. J Am Heart Assoc. 2017;6(4):e004820. doi:10.1161/JAHA.116.00482028365565
  • Del BoC, MarinoM, RisoP, MøllerP, PorriniM. Anthocyanins and metabolites resolve TNF-α-mediated production of E-selectin and adhesion of monocytes to endothelial cells. Chem Biol Interact. 2019;300:49–55. doi:10.1016/j.cbi.2019.01.00230611791
  • DengH, SongZ, XuH, et al. MicroRNA-1185 promotes arterial stiffness though modulating VCAM-1 and E-selectin expression. Cell Physiol Biochem. 2017;41(6):2183–2193. doi:10.1159/00047557628441665
  • DengY, LeiT, LiH, MoX, WangZ, OuH. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice. Biochim Biophys Acta. 2018;1864(8):2590–2599. doi:10.1016/j.bbadis.2018.04.021
  • KayeJ, PiryatinskyV, BirnbergT, et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci. 2016;113(41):E6145–52. doi:10.1073/pnas.160784311327671624
  • Garcia-MirallesM, YusofNA, TanJY, et al. Laquinimod treatment improves myelination deficits at the transcriptional and ultrastructural levels in the YAC128 mouse model of Huntington disease. Mol Neurobiol. 2019;56(6):4464–4478. doi:10.1007/s12035-018-1393-130334188
  • TarcicN, HavivA, BlaugrundE, KayeJ, inventors; Teva Pharmaceutical Industries Ltd, assignee Treatment of crohn’s disease with laquinimod. United States patent application US 15/703,496. 2018 1 4.
  • KatsumotoA, MirandaAS, ButovskyO, TeixeiraAL, RansohoffRM, LambBT. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J Neuroinflammation. 2018;15(1):26. doi:10.1186/s12974-018-1075-y29382353
  • NeumannR, EtzyoniR, inventors; Teva Pharmaceutical Industries Ltd, assignee Treatment of glaucoma using laquinimod. United States patent application US 15/875,833. 2018 5 24.
  • OhtaH, WadaH, NiwaT, et al. Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2005;180(1):11–17. doi:10.1016/j.atherosclerosis.2004.11.01615823270
  • ZhangF, YuW, HargroveJL, et al. Inhibition of TNF-α induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis. 2002;161(2):381–386. doi:10.1016/S0021-9150(01)00672-411888521
  • YangWS, HanNJ, KimJJ, LeeMJ, ParkSK. TNF-α activates high-mobility group box 1-toll-like receptor 4 signaling pathway in human aortic endothelial cells. Cell Physiol Biochem. 2016;38(6):2139–2151. doi:10.1159/00044557027184952
  • LiY, SchwabeRF, DeVries-SeimonT, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6 model of nf-κb-and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 2005;280(23):21763–21772. doi:10.1074/jbc.M50175920015826936
  • MooreS, KhalajAJ, YoonJ, et al. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav. 2013;3(6):664–682. doi:10.1002/brb3.17424363970
  • BasurtoL, GregoryMA, HernándezSB, et al. Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp Gerontol. 2019;124:110624. doi:10.1016/j.exger.2019.05.01331152776
  • StasiolekM, LinkerRA, HayardenyL, Bar IlanO, GoldR. Immune parameters of patients treated with laquinimod, a novel oral therapy for the treatment of multiple sclerosis: results from a double‐blind placebo‐controlled study. Immun Inflammation Dis. 2015;3(2):45–55. doi:10.1002/iid3.42
  • MishraMK, WangJ, SilvaC, MackM, YongVW. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am J Pathol. 2012;181(2):642–651. doi:10.1016/j.ajpath.2012.05.01122749771
  • LuanZG, ZhangH, YangPT, MaXC, ZhangC, GuoRX. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology. 2010;215(12):956–962. doi:10.1016/j.imbio.2009.11.00120163887
  • WestM, MiravalleA. Profile of oral laquinimod and its potential in the treatment of multiple sclerosis. Degener Neurol Neuromuscul Dis. 2011;1:25. doi:10.2147/DNND.S16374
  • LühderF, KebirH, OdoardiF, et al. Laquinimod enhances central nervous system barrier functions. Neurobiol Dis. 2017;102:60–69. doi:10.1016/j.nbd.2017.02.00228235673
  • LeeJS, YuQ, ShinJT, et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell. 2006;11(6):845–857. doi:10.1016/j.devcel.2006.09.00617141159
  • KomaravoluRK, AdamC, MoonenJR, HarmsenMC, GoebelerM, SchmidtM. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovasc Res. 2014;105(1):86–95. doi:10.1093/cvr/cvu23625388666
  • WangX, WuZ, HeY, et al. Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2. Mol Immunol. 2018;101:245–250. doi:10.1016/j.molimm.2018.07.00830029058
  • ShakedI, LeyK. Protective role for myeloid specific KLF2 in atherosclerosis. Circ Res. 2012;110(10):1266. doi:10.1161/CIRCRESAHA.112.27099122581916