257
Views
25
CrossRef citations to date
0
Altmetric
Review

Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration

, &
Pages 1241-1256 | Published online: 26 Mar 2020

References

  • RajabzadehN, FathiE, FarahzadiR. Stem cell-based regenerative medicine. Stem Cell Investig. 2019;6:19. doi:10.21037/sci
  • CoreyS, BonsackB, BorlonganCV. Stem cell-based regenerative medicine for neurological disorders: a special tribute to Dr. Teng Ma. Brain Circ. 2019;5(3):97–100. doi:10.4103/bc.bc_39_1931620654
  • LeeWS, KimHJ, KimKI, KimGB, JinW. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019;8(6):504–511. doi:10.1002/sctm.18-012230835956
  • KhanS, MafiP, MafiR, KhanW. A systematic review of mesenchymal stem cells in spinal cord injury, intervertebral disc repair and spinal fusion. Curr Stem Cell Res Ther. 2018;13(4):316–323. doi:10.2174/1574888X1166617090712003028891440
  • JayaramP, IkpeamaU, RothenbergJB, MalangaGA. Bone marrow-derived and adipose-derived mesenchymal stem cell therapy in primary knee osteoarthritis: a narrative review. PM R. 2019;11(2):177–191. doi:10.1016/j.pmrj.2018.06.01930010050
  • QaziTH, DudaGN, OrtMJ, PerkaC, GeisslerS, WinklerT. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle. 2019;10(3):501–516. doi:10.1002/jcsm.1241630843380
  • LemckeH, VoroninaN, SteinhoffG, DavidR. Recent progress in stem cell modification for cardiac regeneration. Stem Cells Int. 2018;2018:1909346.29535769
  • GrimmD, EgliM, KrugerM, et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev. 2018;27(12):787–804.29596037
  • MadrigalM, RaoKS, RiordanNH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12:260.25304688
  • Mendez-FerrerS, MichurinaTV, FerraroF, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi:10.1038/nature0926220703299
  • RodriguesM, GriffithLG, WellsA. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther. 2010;1(4):32. doi:10.1186/scrt3220977782
  • HuMS, BorrelliMR, LorenzHP, LongakerMT, WanDC. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018;2018:6901983. doi:10.1155/2018/690198329887893
  • ShafeiAE, AliMA, GhanemHG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19:12. doi:10.1002/jgm.2995
  • LiuF, QiuH, XueM, et al. MSC-secreted TGF-beta regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10(1):345. doi:10.1186/s13287-019-1447-y31771622
  • WuR, LiuC, DengX, ChenL, HaoS, MaL. Enhanced alleviation of aGVHD by TGF-beta1-modified mesenchymal stem cells in mice through shifting MPhi into M2 phenotype and promoting the differentiation of Treg cells. J Cell Mol Med. 2019.
  • ZhangB, WangM, GongA, et al. HucMSC-exosome med-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33(7):2158–2168. doi:10.1002/stem.177124964196
  • FurutaT, MiyakiS, IshitobiH, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5(12):1620–1630. doi:10.5966/sctm.2015-028527460850
  • WangLS, WangH, ZhangQL, YangZJ, KongFX, WuCT. Hepatocyte growth factor gene therapy for ischemic diseases. Hum Gene Ther. 2018;29(4):413–423. doi:10.1089/hum.2017.21729409352
  • SongH, SongBW, ChaMJ, ChoiIG, HwangKC. Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther. 2010;10(3):309–319. doi:10.1517/1471259090345599720132054
  • LiX, WangQ, DingL, et al. Intercellular adhesion molecule-1 enhances the therapeutic effects of MSCs in a dextran sulfate sodium-induced colitis models by promoting MSCs homing to murine colons and spleens. Stem Cell Res Ther. 2019;10(1):267. doi:10.1186/s13287-019-1384-931443680
  • LiL, ZhangD, LiP, DamaserM, ZhangY. Virus integration and genome influence in approaches to stem cell based therapy for andro-urology. Adv Drug Deliv Rev. 2015;82-83:12–21. doi:10.1016/j.addr.2014.10.01225453258
  • SzeSK, de KleijnDP, LaiRC, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics. 2007;6(10):1680–1689. doi:10.1074/mcp.M600393-MCP20017565974
  • TsujiK, KitamuraS, WadaJ. Secretomes from mesenchymal stem cells against acute kidney injury: possible heterogeneity. Stem Cells Int. 2018;2018:8693137. doi:10.1155/2018/869313730651737
  • LiuCH, HwangSM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005;32(6):270–279. doi:10.1016/j.cyto.2005.11.00316377203
  • HochAI, BinderBY, GenetosDC, LeachJK. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One. 2012;7(4):e35579. doi:10.1371/journal.pone.003557922536411
  • OskowitzA, McFerrinH, GutschowM, CarterML, PochampallyR. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011;6(3):215–225. doi:10.1016/j.scr.2011.01.00421421339
  • CaplanAI, DennisJE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–1084. doi:10.1002/(ISSN)1097-464416619257
  • AggarwalS, PittengerMF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–1822. doi:10.1182/blood-2004-04-155915494428
  • ZhangH, YangR, WangZ, LinG, LueTF, LinCS. Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J Sex Med. 2011;8(2):437–446. doi:10.1111/j.1743-6109.2010.02128.x21114767
  • ArthurA, CakourosD, CooperL, et al. Twist-1 enhances bone marrow mesenchymal stromal cell support of hematopoiesis by modulating CXCL12 expression. Stem Cells. 2016;34(2):504–509. doi:10.1002/stem.226526718114
  • ChenX, NomaniA, PatelN, NouriFS, HatefiA. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials. 2018;152:1–14. doi:10.1016/j.biomaterials.2017.10.02829078136
  • ChanJ, O’DonoghueK, DeL, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells. 2010;23(1):93–102. doi:10.1634/stemcells.2004-0138
  • ParkJS, SuryaprakashS, LaoYH, LeongKW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015;84:3–16. doi:10.1016/j.ymeth.2015.03.00225770356
  • AslanH, ZilbermanY, ArbeliV, et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng. 2006;12(4):877–889. doi:10.1089/ten.2006.12.87716674300
  • Santiago-TorresJE, LovaszR, BertoneAL. Fetal vs adult mesenchymal stem cells achieve greater gene expression, but less osteoinduction. World J Stem Cells. 2015;7(1):223–234. doi:10.4252/wjsc.v7.i1.22325621122
  • StenderS, MurphyM, O’BrienT, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater. 2007;13:93–99; discussion 99. doi:10.22203/eCM.v013a10
  • HamannA, NguyenA, PannierAK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13(1):7. doi:10.1186/s13036-019-0140-030675180
  • SantosJL, PanditaD, RodriguesJ, PegoAP, GranjaPL, TomasH. Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther. 2011;11(1):46–57. doi:10.2174/15665231179452010221182464
  • GheisariY, SoleimaniM, AzadmaneshK, ZeinaliS. Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy. 2008;10(8):815–823. doi:10.1080/1465324080247430719058061
  • LuCH, LinKJ, ChiuHY, et al. Improved chondrogenesis and engineered cartilage formation from TGF-beta3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A. 2012;18(19–20):2114–2124. doi:10.1089/ten.tea.2012.001022712565
  • LoWH, HwangSM, ChuangCK, ChenCY, HuYC. Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther. 2009;17(4):658–666. doi:10.1038/mt.2009.1319240695
  • HeCX, ZhangTY, MiaoPH, et al. TGF-beta1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem. 2012;59(3):163–169. doi:10.1002/bab.100123586825
  • SeoKW, SohnSY, BhangDH, NamMJ, LeeHW, YounHY. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood-derived mesenchymal stem cells on liver fibrosis in rats. Cell Biol Int. 2014;38(1):106–116. doi:10.1002/cbin.1018624115681
  • TanZ, ZhaoQ, GongP, et al. Research on promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy. Cytotherapy. 2009;11(3):317–325. doi:10.1080/1465324090282475719308772
  • GandraN, WangDD, ZhuY, MaoC. Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew Chem Int Ed Engl. 2013;52(43):11278–11281. doi:10.1002/anie.20130111324038718
  • MunJY, ShinKK, KwonO, LimYT, OhDB. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials. 2016;101:310–320. doi:10.1016/j.biomaterials.2016.05.05727315214
  • HubbsAF, MercerRR, BenkovicSA, et al. Nanotoxicology - a pathologist’s perspective. Toxicol Pathol. 2011;39(2):301–324. doi:10.1177/019262331039070521422259
  • NorppaH, CatalánJ, FalckG, HannukainenK, SiivolaK, SavolainenK. Nano-specific genotoxic effects. J Biomed Nanotechnol. 2011;7(1):19. doi:10.1166/jbn.2011.117921485781
  • FierroFA, KalomoirisS, SondergaardCS, NoltaJA. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011;29(11):1727–1737. doi:10.1002/stem.72021898687
  • ChenYA, QianH, ZhuW, et al. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 2011;20(1):103–113. doi:10.1089/scd.2009.049520446811
  • GonzálezMN, de MelloW, Butler-BrowneGS, et al. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle. 2017;7(1):20. doi:10.1186/s13395-017-0138-629017538
  • WangSX, QinX, SunDD, et al. Effects of hepatocyte growth factor overexpressed bone marrow-derived mesenchymal stem cells on prevention from left ventricular remodelling and functional improvement in infarcted rat hearts. Cell Biochem Funct. 2012;30(7):574–581. doi:10.1002/cbf.v30.722592978
  • ZhaoMZ, NonoguchiN, IkedaN, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab. 2006;26(9):1176–1188. doi:10.1038/sj.jcbfm.960027316421510
  • MoonHH, JooMK, MokH, et al. MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials. 2014;35(5):1744–1754. doi:10.1016/j.biomaterials.2013.11.01924280192
  • YanfuH, RanT, YanqingH, et al. Microencapsulated VEGF gene-modified umbilical cord mesenchymal stromal cells promote the vascularization of tissue-engineered dermis: an experimental study. Cytotherapy. 2014;16(2):160–169. doi:10.1016/j.jcyt.2013.10.01424438897
  • TeeJK, SetyawatiMI, PengF, LeongDT, HoHK. Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology. 2019;13(5):682–700. doi:10.1080/17435390.2019.157164630776942
  • SunL, CuiM, WangZ, et al. Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys Res Commun. 2007;357(3):779–784. doi:10.1016/j.bbrc.2007.04.01017445769
  • MeiSH, McCarterSD, DengY, ParkerCH, LilesWC, StewartDJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269. doi:10.1371/journal.pmed.004026917803352
  • XuJ, QuJ, CaoL, et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol. 2008;214(4):472–481. doi:10.1002/path.230218213733
  • LiY, ZhengL, XuX, et al. Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing. Stem Cell Res Ther. 2013;4(5):113. doi:10.1186/scrt32424477049
  • SchabitzWR, SommerC, ZoderW, KiesslingM, SchwaningerM, SchwabS. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000;31(9):2212–2217. doi:10.1161/01.STR.31.9.221210978054
  • WangZ, YaoW, DengQ, ZhangX, ZhangJ. Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci. 2013;49(2):409–416. doi:10.1007/s12031-012-9908-023143881
  • KurozumiK, NakamuraK, TamiyaT, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–197.14759803
  • LiWJ, TuliR, OkaforC, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26(6):599–609.15282138
  • HerrmannJL, WangY, AbarbanellAM, WeilBR, TanJ, MeldrumDR. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock. 2010;33(1):24–30.19996917
  • HuangAH, MotlekarNA, SteinA, DiamondSL, ShoreEM, MauckRL. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann Biomed Eng. 2008;36(11):1909–1921.18791827
  • ScioliMG, CervelliV, ArcuriG, et al. High insulin-induced down-regulation of Erk-1/IGF-1R/FGFR-1 signaling is required for oxidative stress-mediated apoptosis of adipose-derived stem cells. J Cell Physiol. 2014;229(12):2077–2087.24818995
  • SaviM, BocchiL, FiumanaE, et al. Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J Biomed Mater Res A. 2015;103(9):3012–3025.25727843
  • Gomez-MauricioG, MoscosoI, Martin-CanchoMF, et al. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther. 2016;7(1):94.27423905
  • ChenB, LiQ, ZhaoB, WangY. Stem cell-derived extracellular vesicles as a novel potential therapeutic tool for tissue repair. Stem Cells Transl Med. 2017;6(9):1753‐1758.
  • ChoiJS, YoonHI, LeeKS, et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release. 2016;222:107–115.26699421
  • TsujiK, KitamuraS, WadaJ. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int J Mol Sci. 2020;21:3.
  • TanCY, LaiRC, WongW, DanYY, LimS-K, HoHK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76.24915963
  • ChoiJS, YoonHI, LeeKS, et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release. 2016;222:107–115.26699421
  • ShafeiAE, AliMA, GhanemHG, et al. Mesenchymal stem cells therapy: a promising cell based therapy for treatment of myocardial infraction. J Gene Med. 2017;19:12. doi:10.1002/jgm.2995
  • IkedaN, NonoguchiN, ZhaoMZ, et al. Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. 2005;36(12):2725–2730.16282547
  • PollockK, DahlenburgH, NelsonH, et al. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther. 2016;24(5):965–977.26765769
  • ZhaoGY, CuiL, GaoJ, DaiRT, ZhangP. Study on the levels of DA and metabolite in striatum in rats with Parkinson’s disease treated by BDNF gene modified bone mesenchymal stem cells. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013;29(1):82–85.23662416
  • ChenH, XiaR, LiZ, et al. Mesenchymal stem cells combined with hepatocyte growth factor therapy for attenuating ischaemic myocardial fibrosis: assessment using multimodal molecular imaging. Sci Rep. 2016;6:33700.27804974
  • GaoF, HeT, WangH, et al. A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol. 2007;23(11):891–898.17876381
  • LiZ, MeiJ, ZhangB. Cell transplantation of 5-aza cytidine induced bone marrow stromal cells transfected by angiogenin gene ex vivo into infarcted myocardium, an experimental study. Zhonghua Yi Xue Za Zhi. 2002;82(19):1319–1323.12509935
  • FanL, LinC, ZhuoS, et al. Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur J Heart Fail. 2009;11(11):1023–1030.19875403
  • WangH, SunRT, LiY, et al. HGF Gene Modification in mesenchymal stem cells reduces radiation-induced intestinal injury by modulating immunity. PLoS One. 2015;10(5):e0124420.25933295
  • HaoL, WangJ, ZouZ, et al. Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury. Gene Ther. 2009;16(1):34–42.18701914
  • XueJ, LiX, LuY, et al. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther. 2013;21(2):456–465.23299797
  • HuangJH, SurgeryBDO, HospitalD, et al. Intravenous injection of nerve growth factor gene-modified bone marrow stromal stem cells on the apoptosis of the mouse hepatic cells induced by radiation. J Clin Rehab Tissue Eng Res. 2008;12(38):7503–7506.
  • KumarS, NagyTR, PonnazhaganS. Therapeutic potential of genetically modified adult stem cells for osteopenia. Gene Ther. 2010;17(1):105–116.19741731
  • DulameaAO. The potential use of mesenchymal stem cells in stroke therapy–From bench to bedside. J Neurol Sci. 2015;352(1–2):1–11.25818674
  • SuYR, WangJ, WuJJ, ChenY, JiangYP. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull. 2007;23(2):67–74.17592528
  • LundbergJ, JussingE, LiuZ, et al. Safety of intra-arterial injection with tumor-activated T cells to the rabbit brain evaluated by MRI and SPECT/CT. Cell Transplant. 2017;26(2):283–292.27725029
  • BhatiaV, GuptaV, KhuranaD, SharmaRR, KhandelwalN. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke. AJNR. 2018;39(5):899–904.29545253
  • FengCJ, PerngCK, LinCH, TsaiCH, HuangPH, MaH. Intra-arterial injection of human adipose-derived stem cells improves viability of the random component of axial skin flaps in nude mice. J Plast Reconstr Aesthet Surg. 2020;73(3):598–607.
  • Di SpignaG, IannoneM, LadoganaP, et al. Human cardiac multipotent adult stem cells in 3D matrix: new approach of tissue engineering in cardiac regeneration post-infarction. J Biol Regul Homeost Agents. 2017;31(4):911–921.29254293
  • TangYL, TangY, ZhangYC, QianK, ShenL, PhillipsMI. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005;46(7):1339–1350.16198853
  • LiuN, ZhangY, FanL, et al. Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats. J Transl Med. 2011;9:105.21733181
  • LiW, MaN, OngLL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8):2118–2127.17478584
  • MangiAA, NoiseuxN, KongDL, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–1201.12910262
  • GnecchiM, HeH, NoiseuxN, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661–669.16581974
  • GalloS, SalaV, GattiS, CrepaldiT. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci (Lond). 2015;129(12):1173–1193.26561593
  • ForteG, MinieriM, CossaP, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells. 2006;24(1):23–33. doi:10.1634/stemcells.2004-017616100005
  • LuF, ZhaoX, WuJ, et al. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. Int J Cardiol. 2013;167(6):2524–2532. doi:10.1016/j.ijcard.2012.06.05222981278
  • Gomez-MauricioG, MoscosoI, Martin-CanchoMF, et al. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther. 2016;7(1):94. doi:10.1186/s13287-016-0350-z27423905
  • YangZJ, MaDC, WangW, et al. Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction. Gene Ther. 2006;13(22):1564–1568. doi:10.1038/sj.gt.330282016810195
  • ZhangJ, WangLL, DuW, et al. Hepatocyte growth factor modification enhances the anti-arrhythmic properties of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014;9(10):e111246. doi:10.1371/journal.pone.011124625360679
  • LaddhaAP, KulkarniYA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med. 2019;156:33–46. doi:10.1016/j.rmed.2019.08.00331421589
  • GiriTK, AlexanderA, AgrawalM, SarafS, SarafS. Ajazuddin. Current status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther. 2019;14(2):117–126. doi:10.2174/1574888X1366618050210383129732992
  • KongF, ShiX, XiaoF, et al. Transplantation of HGF modified dental pulp stem cells prevents bone loss in the early phase of ovariectomy-induced osteoporosis. Hum Gene Ther. 2018;29(2):271–282. doi:10.1089/hum.2017.09128950723
  • ZhangJ, ChenJ. Bone tissue regeneration - application of mesenchymal stem cells and cellular and molecular mechanisms. Curr Stem Cell Res Ther. 2017;12(5):357–364. doi:10.2174/1574888X1166616092112155527658728
  • PacelliS, BasuS, WhitlowJ, et al. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev. 2017;120:50–70. doi:10.1016/j.addr.2017.07.01128734899
  • BrungerJM, HuynhNP, GuentherCM, et al. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A. 2014;111(9):E798–E806. doi:10.1073/pnas.132174411124550481
  • WangT, LiaoT, WangH, DengW, YuD. Transplantation of bone marrow stromal cells overexpressing human vascular endothelial growth factor 165 enhances tissue repair in a rat model of radiation-induced injury. Chin Med J (Engl). 2014;127(6):1093–1099.24622441
  • HuS, ChenY, LiL, et al. Effects of adenovirus-mediated delivery of the human hepatocyte growth factor gene in experimental radiation-induced heart disease. Int J Radiat Oncol Biol Phys. 2009;75(5):1537–1544. doi:10.1016/j.ijrobp.2009.07.169719931736
  • LiQ, SunH, XiaoF, et al. Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer. Int J Radiat Biol. 2014;90(1):36–44. doi:10.3109/09553002.2014.84729424059647
  • ZhangJ, ZhouS, ZhouY, et al. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. PLoS One. 2014;9(12):e114670. doi:10.1371/journal.pone.011467025501583
  • ChenS, ChenX, WuX, et al. Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther. 2017;24(1):3–11. doi:10.1038/gt.2016.6427556817
  • ShaoY, ShenJ, ZhouF, HeD. Mesenchymal stem cells overexpressing Ang1 attenuates phosgene-induced acute lung injury in rats. Inhal Toxicol. 2018;30(7–8):313–320. doi:10.1080/08958378.2018.152148330395743
  • SageEK, ThakrarRM, JanesSM. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy. 2016;18(11):1435–1445. doi:10.1016/j.jcyt.2016.09.00327745603
  • WeissDJ, CasaburiR, FlanneryR, LeRoux-WilliamsM, TashkinDP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–1598. doi:10.1378/chest.12-209423172272
  • WilsonJG, LiuKD, ZhuoH, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32. doi:10.1016/S2213-2600(14)70291-725529339
  • RipaRS, WangY, JørgensenE, JohnsenHE, HesseB, KastrupJ. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. European Heart Journal. 2006;27(15):1785–1792.16825290
  • WheelockV, TempkinT, DuffyA, et al. PRE-CELL: clinical and novel biomarker measures of disease progression in a lead-in-observational study for a planned phase 1 trial of genetically modified mesenchymal stem cells over-expressing BDNF in patients with Huntington’s disease (S25.004) Neurology. 2016;86(16 Supplement):S25.004.
  • DengP, TorrestA, PollockK, et al. Clinical trial perspective for adult and juvenile Huntington’s disease using genetically-engineered mesenchymal stem cells. Neural Regen Res. 2016;11(05):702–705. doi:10.4103/1673-5374.18268227335539
  • DaleyGQ, HyunI, ApperleyJF, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Reports. 2016;6(6):787–797. doi:10.1016/j.stemcr.2016.05.00127185282
  • Munoz RuizM, RegueiroJR. New tools in regenerative medicine: gene therapy. Adv Exp Med Biol. 2012;741:254–275.22457115
  • PoulosJ. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9(1):1. doi:10.1186/s13287-017-0735-729291747
  • ImamuraA, KajiyaH, FujisakiS, et al. Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/beta-catenin. Biochem Biophys Res Commun. 2020;523(2):458–464. doi:10.1016/j.bbrc.2019.12.06631882121
  • KingNM, PerrinJ. Ethical issues in stem cell research and therapy. Stem Cell Res Ther. 2014;5(4):85. doi:10.1186/scrt47425157428