124
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Selection and Characterization of a Novel DNA Aptamer, Apt-07S Specific to Hepatocellular Carcinoma Cells

ORCID Icon, , , , &
Pages 1535-1545 | Published online: 20 Apr 2020

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • LlovetJM, Zucman-RossiJ, PikarskyE, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2(1):16018. doi:10.1038/nrdp.2016.1827158749
  • LlovetJM. Updated treatment approach to hepatocellular carcinoma. J Gastroenterol. 2005;40(3):225–235. doi:10.1007/s00535-005-1566-315830281
  • VogelA, CervantesA, ChauI, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):871–873. doi:10.1093/annonc/mdy510
  • LlovetJM, RicciS, MazzaferroV, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. doi:10.1056/NEJMoa070885718650514
  • EllingtonAD, SzostakJW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi:10.1038/346818a01697402
  • TuerkC, GoldL. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–510. doi:10.1126/science.22001212200121
  • ShangguanD, MengL, CaoZC, et al. Identification of liver cancer-specific aptamers using whole live cells. Anal Chem. 2008;80(3):721–728. doi:10.1021/ac701962v18177018
  • ShangguanD, CaoZ, MengL, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008;7(5):2133–2139. doi:10.1021/pr700894d18363322
  • ChangYM, DonovanMJ, TanWH. Using aptamers for cancer biomarker discovery. J Nucleic Acids. 2013;2013:1–7. doi:10.1155/2013/817350
  • KaurH, LiJJ, BayBH, YungLY. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One. 2013;8(1):e50964. doi:10.1371/journal.pone.005096423341879
  • KaurH. Recent developments in cell-SELEX technology for aptamer selection. Biochimica Et Biophysica Acta (BBA) - General Subjects. 2018;1862(10):2323–2329. doi:10.1016/j.bbagen.2018.07.02930059712
  • WangYY, LuoY, BingT, et al. DNA aptamer evolved by cell-selex for recognition of prostate cancer. PLoS One. 2014;9(6):e100243. doi:10.1371/journal.pone.010024324956390
  • LeeJF, StovallGM, EllingtonAD. Aptamer therapeutics advance. Curr Opin Chem Biol. 2006;10(3):282–289. doi:10.1016/j.cbpa.2006.03.01516621675
  • LiS, WangW, DingH, et al. Aptamer BC15 against heterogeneous nuclear ribonucleoprotein A1 has potential value in diagnosis and therapy of hepatocarcinoma. Nucleic Acid Ther. 2012;22(6):391–398. doi:10.1089/nat.2012.036323062008
  • XuJ, TengIT, ZhangL, et al. Molecular recognition of human liver cancer cells using DNA aptamers generated via cell-SELEX. PLoS One. 2015;10(5):e0125863. doi:10.1371/journal.pone.012586325938802
  • ZhaoZ, XuL, ShiX, TanW, FangX, ShangguanD. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst. 2009;134(9):1808–1814. doi:10.1039/b904476k19684903
  • KaurH, BrunoJG, KumarA, SharmaTK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8(15):4016–4032. doi:10.7150/thno.2595830128033
  • LiuN, ZhouC, ZhaoJ, ChenYJCI. Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera. Cancer Invest. 2012;30(8):577–582. doi:10.3109/07357907.2012.70726522812695
  • LuoS, WangS, NaL, ChenF, HuC, ZhangK. The application of aptamer 5TR1 in triple negative breast cancer target therapy. J Cell Biochem. 2018;119(1):896–908. doi:10.1002/jcb.2625428671278
  • ZhouJH, RossiJ. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. doi:10.1038/nrd.2017.8627807347
  • NinomiyaK, KanedaK, KawashimaS, MiyachiY, OginoC, ShimizuN. Cell-SELEX based selection and characterization of DNA aptamer recognizing human hepatocarcinoma. Bioorg Med Chem Lett. 2013;23(6):1797–1802. doi:10.1016/j.bmcl.2013.01.04023403083
  • YuG, LiH, YangS, WenJ, NiuJ, ZuY. ssDNA aptamer specifically targets and selectively delivers cytotoxic drug doxorubicin to HepG2 cells. PLoS One. 2016;11(1):e0147674. doi:10.1371/journal.pone.014767426808385
  • LuB, WangJ, ZhangJ, et al. Screening and verification of ssDNA aptamers targeting human hepatocellular carcinoma. Acta Biochim Biophys Sin. 2014;46(2):128–135. doi:10.1093/abbs/gmt13024300391
  • KaurH, YungLY. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One. 2012;7(2):e31196. doi:10.1371/journal.pone.003119622359573
  • ChenH, YuanCH, YangYF, et al. Subtractive cell-SELEX selection of DNA aptamers binding specifically and selectively to hepatocellular carcinoma cells with high metastatic potential. Biomed Res Int. 2016:1–9. doi:10.1155/2016/5735869
  • MengL, YangL, ZhaoX, et al. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One. 2012;7(4):e33434. doi:10.1371/journal.pone.003343422558072
  • HuZ, HeJ, GongW, et al. TLS11a aptamer/CD3 antibody anti-tumor system for liver cancer. J Biomed Nanotechnol. 2018;14(9):1645–1653. doi:10.1166/jbn.2018.261929958558
  • WangR, ZhaoN, LiS, et al. MicroRNA‐195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58(2):642–653. doi:10.1002/hep.2637323468064
  • YinS, LiJ, HuC, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–1450. doi:10.1002/ijc.2247617205516
  • TaoKS, DouKF, WuXA. Expression of angiostatin cDNA in human hepatocellular carcinoma cell line SMMC-7721 and its effect on implanted carcinoma in nude mice. World J Gastroenterol. 2004;10(10):1421–1424. doi:10.3748/wjg.v10.i10.142115133846
  • JiangY, ZhouX-D, LiuY-K, et al. Antisense Tcf inhibits the neoplastic growth of liver cancer cells. J Cancer Res Clin Oncol. 2004;130(11):671–678. doi:10.1007/s00432-004-0580-915221470
  • ElezR, PiiperA, KronenbergerB, et al. Tumor regression by combination antisense therapy against Plk1 and Bcl-2. Oncogene. 2003;22(1):69–80. doi:10.1038/sj.onc.120603812527909
  • CaoX, LiS, ChenL, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 2009;37(14):4621–4628. doi:10.1093/nar/gkp48919498077
  • Perez-GonzalezC, LafontaineDA, PenedoJC. Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes. Front Chem. 2016;4:33. doi:10.3389/fchem.2016.0003327536656
  • ZhangY, LaiBS, JuhasM. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5). doi:10.3390/molecules24050941
  • ZhangGQ, ZhongLP, YangN, ZhaoYX. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol. 2019;25(26):3359–3369. doi:10.3748/wjg.v25.i26.335931341361
  • WangT, ChenC, LarcherLM, BarreroRA, VeeduRN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50. doi:10.1016/j.biotechadv.2018.11.00130408510
  • TsujiS, HirabayashiN, KatoS, et al. Effective isolation of RNA aptamer through suppression of PCR bias. Biochem Biophys Res Commun. 2009;386(1):223–226. doi:10.1016/j.bbrc.2009.06.01319520057
  • SoldevillaMM, Meraviglia-crivelli de CasoD, MenonAP, PastorF. Aptamer-iRNAs as therapeutics for cancer treatment. Pharmaceuticals. 2018;11(4):108. doi:10.3390/ph11040108