75
Views
6
CrossRef citations to date
0
Altmetric
Original Research

The Regulating Mechanism of Chrysophanol on Protein Level of CaM-CaMKIV to Protect PC12 Cells Against Aβ25-35-Induced Damage

, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2715-2723 | Published online: 13 Jul 2020

References

  • PattersonC. World Alzheimer Report 2018. The State of the Art of Dementia Research. London: New frontiers; 2018:32–36.
  • HungAS, LiangY, ChowTC, et al. Mutated tau, amyloid and neuroinflammation in Alzheimer disease-a brief review. Prog Histochem Cytochem. 2016;51:1–8. doi:10.1016/j.proghi.2016.01.00126851150
  • GötzJ, SchildA, HoerndliF, et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci. 2004;22:453–465. doi:10.1016/j.ijdevneu.2004.07.01315465275
  • KirkitadzeMD, KowalskaA. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim Pol. 2005;52:417–423. doi:10.18388/abp.2005_345415933761
  • FujisawaH. Regulation of the activities of multifunctional Ca2+/calmodulin-dependent protein kinases. J Biochem. 2001;129:193–199. doi:10.1093/oxfordjournals.jbchem.a00284311173518
  • MüllerM, CárdenasC, MeiLJ, et al. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling. Proc Natl Acad Sci USA. 2011;108:13293–13298. doi:10.1073/pnas.110929710821784978
  • WaymanGA, TokumitsuH, DavareMA, et al. Analysis of CaM-kinase signaling in cells. Cell Calcium. 2011;50:1–8. doi:10.1016/j.ceca.2011.02.00721529938
  • McCulloughLD, TarabishyS, LiuL, et al. Inhibition of calcium/calmodulin-dependent protein kinase kinase β and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. Stroke. 2013;44:2559–2566. doi:10.1161/STROKEAHA.113.00103023868268
  • KangH, SunLD, AtkinsCM, et al. An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell. 2001;106:771–783. doi:10.1016/S0092-8674(01)00497-411572782
  • YinYL, GaoD, WangYL, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci USA. 2016;113:E3773–81. doi:10.1073/pnas.160451911327298345
  • Abd AlEN, WesamM. The role of MAPK signaling pathway in selenium amelioration of high fat/high cholesterol diet-induced tauopathy in rats. Chem Biol Interact. 2019;302:108–116. doi:10.1016/j.cbi.2019.01.02230695686
  • ZhangJ, YanC, WangS, et al. Chrysophanol attenuates lead exposure-induced injury to hippocampal neurons in neonatal mice. Neural Regen Res. 2014;9:924–930. doi:10.4103/1673-5374.13314125206913
  • ZhaoYM, FangYL, LiJC, et al. Neuroprotective effects of Chrysophanol against inflammation in middle cerebral artery occlusion mice. Neurosci Lett. 2016;630:16–22. doi:10.1016/j.neulet.2016.07.03627450437
  • LiHC, LuoKX, WangJS. Extrapyramidal side effect of donepezil hydrochloride in an elderly patient: a case report. Medicine. 2020;99(11):e19443. doi:10.1097/MD.000000000001944332176074
  • HaraguchiY, MizoguchiY, OhgidaniM, et al. Monji A donepezil suppresses intracellular Ca2+ mobilization through the PI3K pathway in rodent microglia. J Neuroinflammation. 2017;214(1):258. doi:10.1186/s12974-017-1033-0
  • Weiner MichaelW, Veitch DallasP, Aisen PaulS, et al. 2014 update of the Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2015;11:e1–120.26073027
  • CurraisA, PriorM, DarguschR, et al. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell. 2014;13:379–390. doi:10.1111/acel.1218524341874
  • AhmadA, AliT, ParkHY, et al. Neuroprotective effect of fisetin against Amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol. 2017;54:2269–2285. doi:10.1007/s12035-016-9795-426944285
  • ZhangLJ, TuRQ, WangYW, et al. Early-life exposure to lead induces cognitive impairment in elder mice targeting SIRT1 phosphorylation and oxidative alterations. Front Physiol. 2017;8:446. doi:10.3389/fphys.2017.0044628706491
  • LiuCM, YangW, MaJQ, et al. Dihydromyricetin inhibits lead-induced cognitive impairments and inflammation by the adenosine 5ʹ-monophosphate-activated protein kinase pathway in mice. J Agric Food Chem. 2018;66:7975–7982. doi:10.1021/acs.jafc.8b0243329975840
  • HudmonA, SchulmanH. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510. doi:10.1146/annurev.biochem.71.110601.13541012045104
  • MeansAR. Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol. 2000;14:4–13. doi:10.1210/mend.14.1.041410628743
  • CaoLL, GuanPP, LiangYY, et al. Cyclooxygenase-2 is essential for mediating the effects of calcium ions on stimulating phosphorylation of tau at the sites of Ser 396 and Ser 404. J Alzheimers Dis. 2019;68:1095–1111. doi:10.3233/JAD-18106630883354
  • WeiYP, YeJW, WangX, et al. Tau-induced ca/calmodulin-dependent protein kinase-IV activation aggravates nuclear tau hyperphosphorylation. Neurosci Bull. 2018;34:261–269. doi:10.1007/s12264-017-0148-828646348
  • ŠimićG, Babić LekoM, WrayS, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6:6. doi:10.3390/biom601000626751493
  • SongGH, ZhangY, YuSP, et al. Chrysophanol attenuates airway inflammation and remodeling through nuclear factor-kappa B signaling pathway in asthma. Phytother Res. 2019;33:2702–2713. doi:10.1002/ptr.644431313371
  • XieL, TangHL, SongJW, et al. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol. 2019;71:1475–1487. doi:10.1111/jphp.1314331373015
  • ParkS, LimW, SongG. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways. Toxicol Appl Pharmacol. 2018;360:201–211. doi:10.1016/j.taap.2018.10.01030300626
  • ShenCY, JiangJG, YangL, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017;174:1395–1425. doi:10.1111/bph.1363127659301
  • LinF, ZhangC, ChenXZ, et al. Chrysophanol affords neuroprotection against microglial activation and free radical-mediated oxidative damage in BV2 murine microglia. Int J Clin Exp Med. 2015;8:3447–3455.26064235
  • ChaeU, MinJ-S, LeemHH, et al. Chrysophanol suppressed glutamate-induced hippocampal neuronal cell death via regulation of dynamin-related protein 1-dependent mitochondrial fission. Pharmacology. 2017;100(3–4):153–160. doi:10.1159/00047781428641287
  • YeT, LiX, ZhouP, et al. Chrysophanol improves memory ability of d-galactose and Aβ25-35 treated rat correlating with inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway in hippocampus. 3 Biotech. 2020;10(3):111. doi:10.1007/s13205-020-2103-z