123
Views
21
CrossRef citations to date
0
Altmetric
Original Research

Silencing of circHIPK3 Inhibits Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction by Sponging miR-185-3p

, &
Pages 5699-5710 | Published online: 29 Dec 2020

References

  • NakamuraM, SadoshimaJ. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407.29674714
  • ShimizuI, MinaminoT. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–262. doi:10.1016/j.yjmcc.2016.06.00127262674
  • SemsarianC, HealeyMJ, FatkinD, et al. A polymorphic modifier gene alters the hypertrophic response in a murine model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33(11):2055–2060. doi:10.1006/jmcc.2001.146611708849
  • ChenLL, YangL. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–388. doi:10.1080/15476286.2015.102027125746834
  • CapelB, SwainA, NicolisS, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019–1030. doi:10.1016/0092-8674(93)90279-Y7684656
  • MemczakS, JensM, ElefsiniotiA, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature1192823446348
  • DingS, ZhuY, LiangY, HuangH, XuY, ZhongC. Circular RNAs in vascular functions and diseases. Adv Exp Med Biol. 2018;1087:287–297.30259375
  • WangK, LongB, LiuF, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–2611. doi:10.1093/eurheartj/ehv71326802132
  • YangL, LiY, WangX, et al. Overexpression of miR-223 tips the balance of pro- and anti-hypertrophic signaling cascades toward physiologic cardiac hypertrophy. J Biol Chem. 2016;291(30):15700–15713. doi:10.1074/jbc.M116.71580527226563
  • WuHJ, ZhangCY, ZhangS, ChangM, WangHY. Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem. 2016;39(1):205–216. doi:10.1159/00044561727336675
  • SchulteC, JoshiA, MayrM. Response by schulte et al to letter regarding article, “comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury”. Circ Res. 2019;125(4):e22–e23.31518205
  • YangMH, WangH, HanSN, et al. Circular RNA expression in isoproterenol hydrochloride-induced cardiac hypertrophy. Aging (Albany NY). 2020;12(3):2530–2544. doi:10.18632/aging.10276132023551
  • ZhengQ, BaoC, GuoW, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.27050392
  • WenJ, LiaoJ, LiangJ, ChenXP, ZhangB, ChuL. Circular RNA HIPK3: a key circular RNA in a variety of human cancers. Front Oncol. 2020;10:773. doi:10.3389/fonc.2020.0077332500032
  • KleavelandB, ShiCY, StefanoJ, BartelDPA. Network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174(2):350–362. doi:10.1016/j.cell.2018.05.02229887379
  • MuoioDM, NewgardCB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(3):193–205. doi:10.1038/nrm232718200017
  • van RooijE, LiuN, OlsonEN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159–166. doi:10.1016/j.tig.2008.01.00718325627
  • DinizGP, LinoCA, MorenoCR, SengerN, Barreto-ChavesM. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone. J Cell Physiol. 2017;232(12):3360–3368. doi:10.1002/jcp.2578128063219
  • CareA, CatalucciD, FelicettiF, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–618. doi:10.1038/nm158217468766
  • WangF, YuanY, YangP, LiX. Extracellular vesicles-mediated transfer of miR-208a/b exaggerate hypoxia/reoxygenation injury in cardiomyocytes by reducing QKI expression. Mol Cell Biochem. 2017;431(1–2):187–195. doi:10.1007/s11010-017-2990-428283792
  • DinizGP, TakanoAP, Barreto-ChavesML. MiRNA-208a and miRNA-208b are triggered in thyroid hormone-induced cardiac hypertrophy - role of type 1 angiotensin II receptor (AT1R) on miRNA-208a/alpha-MHC modulation. Mol Cell Endocrinol. 2013;374(1–2):117–124. doi:10.1016/j.mce.2013.04.01023623871
  • UcarA, GuptaSK, FiedlerJ, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3(1):1078. doi:10.1038/ncomms209023011132
  • LinZ, MurtazaI, WangK, JiaoJ, GaoJ, LiPF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106(29):12103–12108.19574461
  • SamakM, FatullayevJ, SabashnikovA, et al. Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res. 2016;22:75–79. doi:10.12659/MSMBR.90043727450399
  • WangY, WangY, LiY, et al. Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression. Cell Adh Migr. 2019;13(1):220–228. doi:10.1080/19336918.2019.161943231096819
  • WangK, GanTY, LiN, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24(6):1111–1120. doi:10.1038/cdd.2017.6128498369
  • LiH, XuJD, FangXH, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116(7):1323–1334.31397837
  • LiM, DingW, TariqMA, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics. 2018;8(21):5855–5869. doi:10.7150/thno.2728530613267
  • KimGR, ChoSN, KimHS, et al. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension. J Hypertens. 2016;34(11):2206–2219. doi:10.1097/HJH.000000000000108127512969
  • HuD, ZhangY. Circular RNA HIPK3 promotes glioma progression by binding to miR-124-3p. Gene. 2019;690:81–89. doi:10.1016/j.gene.2018.11.07330576808
  • DengY, WangJ, XieG, ZengX, LiH. Circ-HIPK3 strengthens the effects of adrenaline in heart failure by MiR-17-3p - ADCY6 axis. Int J Biol Sci. 2019;15(11):2484–2496. doi:10.7150/ijbs.3614931595165
  • NiH, LiW, ZhugeY, et al. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol. 2019;292:188–196. doi:10.1016/j.ijcard.2019.04.00630967276
  • WangY, ZhaoR, LiuW, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev. 2019;2019:7954657.31885817
  • KimJO, SongDW, KwonEJ, et al. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One. 2015;10(3):e122509.
  • YuM, LiangW, XieY, et al. Circulating miR-185 might be a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. Sci Rep. 2016;6(1):33580. doi:10.1038/srep3358027645404
  • LiCC, QiuXT, SunQ, et al. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med. 2019;23(2):1164–1173. doi:10.1111/jcmm.1401630450725
  • Diaz-SotoG, RocherA, Garcia-RodriguezC, NunezL, VillalobosC. The calcium-sensing receptor in health and disease. Int Rev Cell Mol Biol. 2016;327:321–369.27692178
  • TokaHR, PollakMR. The role of the calcium-sensing receptor in disorders of abnormal calcium handling and cardiovascular disease. Curr Opin Nephrol Hypertens. 2014;23(5):494–501. doi:10.1097/MNH.000000000000004224992569
  • BrancaccioD, CozzolinoM. Cardiovascular effects of VDR and CaSR activation. G Ital Nefrol. 2009;26(Suppl 49):S18–S22.19941274
  • LuM, LengB, HeX, ZhangZ, WangH, TangF. Calcium sensing receptor-related pathway contributes to cardiac injury and the mechanism of astragaloside IV on cardioprotection. Front Pharmacol. 2018;9:1163. doi:10.3389/fphar.2018.0116330364197