419
Views
35
CrossRef citations to date
0
Altmetric
Original Research

Combination Chemotherapy of Lung Cancer – Co-Delivery of Docetaxel Prodrug and Cisplatin Using Aptamer-Decorated Lipid–Polymer Hybrid Nanoparticles

, , , , , , , & show all
Pages 2249-2261 | Published online: 09 Jun 2020

References

  • SackoK, ThangavelK, ShoyeleSA. Codelivery of genistein and miRNA-29b to A549 cells using aptamer-hybrid nanoparticle bioconjugates. Nanomaterials. 2019;9(7):1052. doi:10.3390/nano9071052
  • ShenY, LiM, LiuT, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine. 2019;14:4029–4044. doi:10.2147/IJN.S20168831213813
  • PerepelyukM, MaherC, LakshmikuttyammaA, ShoyeleSA. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int J Nanomedicine. 2016;11:3533–3544. doi:10.2147/IJN.S11048827555773
  • EngelbergS, ModrejewskiJ, WalterJG, LivneyYD, AssarafYG. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget. 2018;9(30):20993–21006. doi:10.18632/oncotarget.2477229765515
  • JoH, BanC. Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med. 2016;6(48):e230. doi:10.1038/emm.2016.44
  • NguyenNV, JenCP. Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles. Micromachines. 2019;10(3):195.
  • PoturnayováA, DzubinováĽ, BuríkováM, BízikJ, HianikT. Detection of breast cancer cells using acoustics aptasensor specific to HER2 receptors. Biosensors. 2019;9(2):72.
  • DuanT, XuZ, SunF, et al. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother. 2019;117:109121. doi:10.1016/j.biopha.2019.10912131252265
  • ZhangY, ZhaoJ, SunJ, HuangL, LiQ. Targeting lung cancer initiating cells by all-trans retinoic acid-loaded lipid-PLGA nanoparticles with CD133 aptamers. Exp Ther Med. 2018;16(6):4639–4649. doi:10.3892/etm.2018.676230542415
  • GaoJ, FengSS, GuoY. Antibody engineering promotes nanomedicine for cancer treatment. Nanomedicine (Lond). 2010;5(8):1141–1145. doi:10.2217/nnm.10.9421039191
  • MandalB, MittalNK, BalabathulaP, ThomaLA, WoodGC. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016;81:162–171. doi:10.1016/j.ejps.2015.10.02126517962
  • WangJ, SuG, YinX, et al. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: in vitro and in vivo evaluation. Biomed Pharmacother. 2019;120:109493. doi:10.1016/j.biopha.2019.10949331586902
  • WangG, WangZ, LiC, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–284. doi:10.1016/j.biopha.2018.06.13729966971
  • LuZ, SuJ, LiZ, ZhanY, YeD. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev Ind Pharm. 2017;43(1):160–170. doi:10.1080/03639045.2016.122633727553814
  • XiongY, ZhaoY, MiaoL, LinCM, HuangL. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release. 2016;244(Pt A):63–73. doi:10.1016/j.jconrel.2016.11.00527840166
  • GuoS, ZhangY, WuZ, et al. Synergistic combination therapy of lung cancer: cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed Pharmacother. 2019;118:109225. doi:10.1016/j.biopha.2019.10922531325705
  • WuL, LengD, CunD, FogedC, YangM. Advances in combination therapy of lung cancer: rationales, delivery technologies and dosage regimens. J Control Release. 2017;28(260):78–91. doi:10.1016/j.jconrel.2017.05.023
  • LiF, HuangZ, ChenH, et al. Redox-sensitive lipophilic prodrugs: delivering unstable chemotherapeutant for improved cancer therapy. Drug Deliv. 2019;26(1):1068–1079. doi:10.1080/10717544.2019.167869631735094
  • ZengY, MaJ, ZhanY, et al. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine. 2018;18(13):6551–6574. doi:10.2147/IJN.S173431
  • WangH, ZhaoX, GuoC, et al. Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS One. 2015;10(9):e0139136. doi:10.1371/journal.pone.013913626406332
  • SongY, CaiH, YinT, et al. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomedicine. 2018;15(13):1585–1600. doi:10.2147/IJN.S155383
  • LiM, ZhaoL, ZhangT, et al. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharm Sin B. 2019;9(2):421–432. doi:10.1016/j.apsb.2018.08.00830972286
  • ZhangL, ZhuD, DongX, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine. 2015;16(10):2101–2114.
  • ZhangRX, CaiP, ZhangT, et al. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine. 2016;12(5):1279–1290. doi:10.1016/j.nano.2015.12.38326772427
  • ZhangY, ZhouZ, ChenM. The Length of hydrophobic chain in amphiphilic polypeptides regulates the efficiency of gene delivery. Polymers (Basel). 2018;10(4):379.
  • ZhangX, LiuJ, LiX, et al. Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose Response. 2019;17(3):1559325819872583. doi:10.1177/155932581987258331523204
  • CatanzaroD, NicolosiS, CocettaV, et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget. 2018;9(24):16847–16860. doi:10.18632/oncotarget.2470829682189
  • WangZ, WeiY, FangG, et al. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-ε-poly(caprolactone) nanocarriers. Drug Des Devel Ther. 2018;24(12):3171–3180. doi:10.2147/DDDT.S175614
  • ZhangY, AngelidakiI. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnol Bioeng. 2011;108(10):2339e47. doi:10.1002/bit.2320421557205
  • YuD, LiW, ZhangY, ZhangB. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed Pharmacother. 2016;83:1428–1435. doi:10.1016/j.biopha.2016.08.06127592131
  • WangC, SuL, WuC, WuJ, ZhuC, YuanG. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev Ind Pharm. 2016;42(12):1938–1944. doi:10.1080/03639045.2016.118543527142812
  • ZhangG, LiuF, JiaE, JiaL, ZhangY. Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Drug Deliv. 2016;23(4):1393–1397. doi:10.3109/10717544.2015.105405226165422
  • LiuJ, ChengH, HanL, et al. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2018;25(12):3199–3209. doi:10.2147/DDDT.S172199
  • ChouTC, TalalayP. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi:10.1016/0065-2571(84)90007-46382953
  • ParkBJ, WhichardZL, CoreySJ. Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines—lessons for design of combination targeted therapy. Cancer Lett. 2012;320(1):104–110. doi:10.1016/j.canlet.2012.01.03922306341
  • CaiL, XuG, ShiC, GuoD, WangX, LuoJ. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456–468. doi:10.1016/j.biomaterials.2014.10.04425453973
  • NiXL, ChenLX, ZhangH, et al. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv. 2017;24(1):1501–1512. doi:10.1080/10717544.2017.138486228961023
  • ZhangP, ZhaoZ, LiC, et al. Aptamer-decorated self-assembled aggregation-induced emission organic dots for cancer cell targeting and imaging. Anal Chem. 2018;90(2):1063–1067. doi:10.1021/acs.analchem.7b0393329275625
  • VandghanooniS, EskandaniM, BararJ, OmidiY. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond). 2018;13(21):2729–2758. doi:10.2217/nnm-2018-020530394201
  • ZhaoY, XuJ, LeVM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm. 2019;16(11):4696–4710. doi:10.1021/acs.molpharmaceut.9b0086731589818
  • LiY, DuoY, BaoS, et al. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. Int J Nanomedicine. 2017;12:6239–6257. doi:10.2147/IJN.S14329328894364
  • YangF, LiA, LiuH, ZhangH. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des Devel Ther. 2018;4(12):3321–3333. doi:10.2147/DDDT.S176879
  • EngelbergS, NetzerE, AssarafYG, LivneyYD. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis. 2019;10(10):702. doi:10.1038/s41419-019-1870-031541073
  • ZhaoJ, YangY, HanX, et al. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics. ACS Appl Mater Interfaces. 2017;9(28):23555–23563. doi:10.1021/acsami.7b0753528636308
  • YanJ, WangY, ZhangX, LiuS, TianC, WangH. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 2016;23(5):1757–1762. doi:10.3109/10717544.2015.106942326203689
  • NanY. Lung carcinoma therapy using epidermal growth factor receptor-targeted lipid polymeric nanoparticles co-loaded with cisplatin and doxorubicin. Oncol Rep. 2019;42(5):2087–2096. doi:10.3892/or.2019.732331545462
  • GuF, HuC, XiaQ, GongC, GaoS, ChenZ. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J Nanopart Res. 2018;20(11):303. doi:10.1007/s11051-018-4407-z30524190
  • MoritaY, LeslieM, KameyamaH, VolkDE, TanakaT. Aptamer Therapeutics in Cancer: current and Future. Cancers (Basel). 2018;10(3):80. doi:10.3390/cancers10030080
  • ColomboS, CunD, RemautK, et al. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles. J Control Release. 2015;201:22–31. doi:10.1016/j.jconrel.2014.12.02625540904