173
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Effects of Short-Chain Fatty Acids on Rat Colonic Hypermotility Induced by Water Avoidance Stress

, , , , & ORCID Icon
Pages 4671-4684 | Published online: 02 Nov 2020

References

  • LongstrethGF, ThompsonWG, CheyWD, et al. Functional bowel disorders. Gastroenterology. 2006;130(5):1480–1491. doi:10.1053/j.gastro.2005.11.06116678561
  • BlanchardEB, LacknerJM, JaccardJ, et al. The role of stress in symptom exacerbation among IBS patients. J Psychosom Res. 2008;64(2):119–128. doi:10.1016/j.jpsychores.2007.10.01018222125
  • Vasquez-RiosG, MachicadoJD, TicseR, et al. Stress and a sedentary lifestyle are associated with irritable bowel syndrome in medical students from Peru: a cross-sectional study. Eur J Gastroenterol Hepatol. 2019;1. doi:10.1097/MEG.000000000000147930394944
  • GweeKA, GhoshalUC, ChenM. Irritable bowel syndrome in Asia: pathogenesis, natural history, epidemiology, and management. J Gastroenterol Hepatol. 2018;33(1):99–110. doi:10.1111/jgh.1398728901578
  • MurakamiT, KamadaK, MizushimaK, et al. Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion. 2017;95(1):55–60. doi:10.1159/00045236428052282
  • DattaUK. Effect of heat stress on gastro-intestinal motility in young albino rats. Indian J Physiol Pharmacol. 2001;45(2):222–226.11480229
  • LinMJ, YuBP. Colonic hypermotility in a rat model of irritable bowel syndrome is associated with upregulation of TMEM16A in myenteric plexus. Dig Dis Sci. 2018;63(12):3329–3338. doi:10.1007/s10620-018-5261-730155840
  • MiampambaM, MillionM, YuanPQ, et al. Water avoidance stress activates colonic myenteric neurons in female rats. Neuroreport. 2007;18(7):679–682. doi:10.1097/WNR.0b013e3280bef7f817426598
  • YuYC, LiJ, ZhangM, et al. Resveratrol improves brain-gut axis by regulation of 5-HT-dependent signaling in the rat model of irritable bowel syndrome. Front Cell Neurosci. 2019;13:30. doi:10.3389/fncel.2019.0003030800058
  • RoyCC, KienCL, BouthillierL, et al. Short-chain fatty acids: ready for prime time? Nutr Clin Pract. 2006;21(4):351–366. doi:10.1177/011542650602100435116870803
  • DonohoeDR, GargeN, ZhangX, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–526. doi:10.1016/j.cmet.2011.02.01821531334
  • TanJ, McKenzieC, PotamitisM, et al. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91–119.24388214
  • WongJM, de SouzaR, KendallCW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–243. doi:10.1097/00004836-200603000-0001516633129
  • GeX, ZhaoW, DingC, et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep. 2017;7(1):441. doi:10.1038/s41598-017-00612-y28348415
  • RondeauMP, MeltzerK, MichelKE, et al. Short chain fatty acids stimulate feline colonic smooth muscle contraction. J Feline Med Surg. 2003;5(3):167–173. doi:10.1016/S1098-612X(03)00002-012765627
  • JouetP, MoussataD, DubocH, et al. Effect of short-chain fatty acids and acidification on the phasic and tonic motor activity of the human colon. Neurogastroenterol Motil. 2013;25(12):943–949. doi:10.1111/nmo.1221224033744
  • HurstNR, KendigDM, MurthyKS, et al. The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterol Motil. 2014;26(11):1586–1596. doi:10.1111/nmo.1242525223619
  • BradesiS, SchwetzI, EnnesHS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G42–G53. doi:10.1152/ajpgi.00500.200415746211
  • JiangN, LvJW, WangHX, et al. Antidepressant-like effects of 20(S)-protopanaxadiol in a mouse model of chronic social defeat stress and the related mechanisms. Phytother Res. 2019;33(10):2726–2736. doi:10.1002/ptr.644631353678
  • OligschlaegerY, YadatiT, HoubenT, et al. Inflammatory bowel disease: a stressed “gut/feeling”. Cells. 2019;8(7):659. doi:10.3390/cells8070659
  • LiuY, LuoH, LiangC, et al. Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress. PLoS One. 2013;8(2):e55853. doi:10.1371/journal.pone.005585323405222
  • ManriqueVD, GonzalezSM. Short chain fatty acids (butyric acid) and intestinal diseases. Nutr Hosp. 2017;34(Suppl 4):58–61.29156934
  • AhmadmehrabiS, TangW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32(6):761–766. doi:10.1097/HCO.000000000000044529023288
  • Castillo-AlvarezF, Marzo-SolaME. Role of the gut microbiota in the development of various neurological diseases. Neurologia. 2019.
  • WangG, YuY, WangYZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol. 2019;234(10):17023–17049. doi:10.1002/jcp.2843630888065
  • van de WouwM, BoehmeM, LyteJM, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018;596(20):4923–4944. doi:10.1113/JP27643130066368
  • MaltzRM, KeirseyJ, KimSC, et al. Social stress affects colonic inflammation, the gut microbiome, and short-chain fatty acid levels and receptors. J Pediatr Gastroenterol Nutr. 2019;68(4):533–540. doi:10.1097/MPG.000000000000222630540706
  • WangB, ZhangL, ZhuSW, et al. Short chain fatty acids contribute to gut microbiota-induced promotion of colonic melatonin receptor expression. J Biol Regul Homeost Agents. 2019;33(3):763–771.31204469
  • ZhangJ, SongL, WangY, et al. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J Gastroenterol Hepatol. 2018. doi:10.1111/jgh.14536
  • BajkaBH, ClarkeJM, ToppingDL, et al. Butyrylated starch increases large bowel butyrate levels and lowers colonic smooth muscle contractility in rats. Nutr Res. 2010;30(6):427–434. doi:10.1016/j.nutres.2010.06.00320650351
  • SoretR, ChevalierJ, De CoppetP, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–1782. doi:10.1053/j.gastro.2010.01.05320152836
  • VincentAD, WangXY, ParsonsSP, et al. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G896–G907. doi:10.1152/ajpgi.00237.201730095295
  • KrejnerA, BruhsA, MrowietzU, et al. Decreased expression of G-protein-coupled receptors GPR43 and GPR109a in psoriatic skin can be restored by topical application of sodium butyrate. Arch Dermatol Res. 2018;310(9):751–758. doi:10.1007/s00403-018-1865-130209581
  • TangY, ChenY, JiangH, et al. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer. 2011;128(4):847–856. doi:10.1002/ijc.2563820979106
  • ShiG, SunC, GuW, et al. Free fatty acid receptor 2, a candidate target for type 1 diabetes, induces cell apoptosis through ERK signaling. J Mol Endocrinol. 2014;53(3):367–380. doi:10.1530/JME-14-006525298143
  • SchneidermanN, IronsonG, SiegelSD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–628. doi:10.1146/annurev.clinpsy.1.102803.14414117716101
  • HankeML, PowellND, StinerLM, et al. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun. 2012;26(7):1150–1159. doi:10.1016/j.bbi.2012.07.01122841997
  • GurfeinBT, HasdemirB, MilushJM, et al. Enriched environment and stress exposure influence splenic B lymphocyte composition. PLoS One. 2017;12(7):e180771. doi:10.1371/journal.pone.0180771
  • WilliamsED, MaglianoDJ, TappRJ, et al. Psychosocial stress predicts abnormal glucose metabolism: the Australian diabetes, obesity and lifestyle (AusDiab) study. Ann Behav Med. 2013;46(1):62–72. doi:10.1007/s12160-013-9473-y23389687
  • RoedigerWE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21(9):793–798. doi:10.1136/gut.21.9.7937429343
  • PsichasA, SleethML, MurphyKG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424–429. doi:10.1038/ijo.2014.15325109781
  • HellstromPM, NaslundE, EdholmT, et al. GLP-1 suppresses gastrointestinal motility and inhibits the migrating motor complex in healthy subjects and patients with irritable bowel syndrome. Neurogastroenterol Motil. 2008;20(6):649–659. doi:10.1111/j.1365-2982.2007.01079.x18298441
  • CherbutC, FerrierL, RozeC, et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol. 1998;275(6):G1415–G1422.9843779
  • SuplyE, de VriesP, SoretR, et al. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol. 2012;302(12):G1373–G1380. doi:10.1152/ajpgi.00338.201122492692
  • FukumotoS, TatewakiM, YamadaT, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1269–R1276. doi:10.1152/ajpregu.00442.200212676748
  • NohrMK, PedersenMH, GilleA, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10):3552–3564. doi:10.1210/en.2013-114223885020